Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(5): 3935-3958, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38365209

ABSTRACT

As SARS-CoV-2 continues to circulate, antiviral treatments are needed to complement vaccines. The virus's main protease, 3CLPro, is an attractive drug target in part because it recognizes a unique cleavage site, which features a glutamine residue at the P1 position and is not utilized by human proteases. Herein, we report the invention of MK-7845, a novel reversible covalent 3CLPro inhibitor. While most covalent inhibitors of SARS-CoV-2 3CLPro reported to date contain an amide as a Gln mimic at P1, MK-7845 bears a difluorobutyl substituent at this position. SAR analysis and X-ray crystallographic studies indicate that this group interacts with His163, the same residue that forms a hydrogen bond with the amide substituents typically found at P1. In addition to promising in vivo efficacy and an acceptable projected human dose with unboosted pharmacokinetics, MK-7845 exhibits favorable properties for both solubility and absorption that may be attributable to the unusual difluorobutyl substituent.


Subject(s)
COVID-19 , Glutamine , Humans , Glutamine/chemistry , SARS-CoV-2 , Cysteine Endopeptidases/chemistry , Inventions , Protease Inhibitors/pharmacology , Amides , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
2.
Sci Transl Med ; 15(684): eabn2038, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812345

ABSTRACT

Antiretroviral therapy inhibits HIV-1 replication but is not curative due to establishment of a persistent reservoir after virus integration into the host genome. Reservoir reduction is therefore an important HIV-1 cure strategy. Some HIV-1 nonnucleoside reverse transcriptase inhibitors induce HIV-1 selective cytotoxicity in vitro but require concentrations far exceeding approved dosages. Focusing on this secondary activity, we found bifunctional compounds with HIV-1-infected cell kill potency at clinically achievable concentrations. These targeted activator of cell kill (TACK) molecules bind the reverse transcriptase-p66 domain of monomeric Gag-Pol and act as allosteric modulators to accelerate dimerization, resulting in HIV-1+ cell death through premature intracellular viral protease activation. TACK molecules retain potent antiviral activity and selectively eliminate infected CD4+ T cells isolated from people living with HIV-1, supporting an immune-independent clearance strategy.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Antiviral Agents/therapeutic use , Apoptosis , Cell Death , CD4-Positive T-Lymphocytes , Virus Replication
3.
ACS Chem Biol ; 17(9): 2595-2604, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36044633

ABSTRACT

Although current antiretroviral therapy can control HIV-1 replication and prevent disease progression, it is not curative. Identifying mechanisms that can lead to eradication of persistent viral reservoirs in people living with HIV-1 (PLWH) remains an outstanding challenge to achieving cure. Utilizing a phenotypic screen, we identified a novel chemical class capable of killing HIV-1 infected peripheral blood mononuclear cells. Tool compounds ICeD-1 and ICeD-2 ("inducer of cell death-1 and 2"), optimized for potency and selectivity from screening hits, were used to deconvolute the mechanism of action using a combination of chemoproteomic, biochemical, pharmacological, and genetic approaches. We determined that these compounds function by modulating dipeptidyl peptidase 9 (DPP9) and activating the caspase recruitment domain family member 8 (CARD8) inflammasome. Efficacy of ICeD-1 and ICeD-2 was dependent on HIV-1 protease activity and synergistic with efavirenz, which promotes premature activation of HIV-1 protease at high concentrations in infected cells. This in vitro synergy lowers the efficacious cell kill concentration of efavirenz to a clinically relevant dose at concentrations of ICeD-1 or ICeD-2 that do not result in complete DPP9 inhibition. These results suggest engagement of the pyroptotic pathway as a potential approach to eliminate HIV-1 infected cells.


Subject(s)
HIV Infections , HIV-1 , Alkynes , Benzoxazines , CARD Signaling Adaptor Proteins/metabolism , Cyclopropanes , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , HIV Infections/drug therapy , HIV-1/metabolism , Humans , Inflammasomes/metabolism , Leukocytes, Mononuclear , Neoplasm Proteins/metabolism
4.
ACS Med Chem Lett ; 8(12): 1292-1297, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259750

ABSTRACT

Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718.

5.
ACS Chem Biol ; 12(11): 2858-2865, 2017 11 17.
Article in English | MEDLINE | ID: mdl-29024587

ABSTRACT

Allosteric integrase inhibitors (ALLINIs) bind to the lens epithelial-derived growth factor (LEDGF) pocket on HIV-1 integrase (IN) and possess potent antiviral effects. Rather than blocking proviral integration, ALLINIs trigger IN conformational changes that have catastrophic effects on viral maturation, rendering the virions assembled in the presence of ALLINIs noninfectious. A high-throughput screen for compounds that disrupt the IN·LEDGF interaction was executed, and extensive triage led to the identification of a t-butylsulfonamide series, as exemplified by 1. The chemical, biochemical, and virological characterization of this series revealed that 1 and its analogs produce an ALLINI-like phenotype through engagement of IN sites distinct from the LEDGF pocket. Key to demonstrating target engagement and differentiating this new series from the existing ALLINIs was the development of a fluorescence polarization probe of IN (FLIPPIN) based on the t-butylsulfonamide series. These findings further solidify the late antiviral mechanism of ALLINIs and point toward opportunities to develop structurally and mechanistically novel antiretroviral agents with unique resistance patterns.


Subject(s)
Allosteric Regulation/drug effects , HIV Infections/drug therapy , HIV Integrase Inhibitors/chemistry , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , HIV-1/drug effects , Cell Line , Drug Discovery , HIV Infections/metabolism , HIV Infections/virology , HIV-1/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Protein Interaction Maps/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology
6.
Naunyn Schmiedebergs Arch Pharmacol ; 390(4): 435-441, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28220210

ABSTRACT

The correlation of in vitro inhibition of cathepsin K (CatK) activity and in vivo suppression of collagen I biomarkers was examined with three selective CatK inhibitors to explore the potential translatability from animal species to human. These inhibitors exhibited good in vitro potencies toward recombinant CatK enzymes across species, with IC50 values ranging from 0.20 to 6.1 nM. In vivo studies were conducted in animal species following multiple-day dosing of the CatK inhibitors to achieve steady-state plasma drug concentration-time profiles. Measurement of urinary bone resorption biomarkers (cross-linked N-terminal telopeptide and helical peptide of type I collagen) revealed drug concentration-dependent suppression of biomarkers, with EC50 values estimated to be 12 to 160 nM. Marked improvement in the correlation between in vitro and in vivo CatK activities was observed with the application of unbound (free) fraction in plasma, consistent with the conditions stipulated by the free-drug hypothesis. These results indicate that the in vitro-in vivo translation of CatK inhibition observed in animal species can translate to humans when the unbound fraction of the inhibitor is considered. Interestingly, residual levels of urinary bone resorption marker were detected as the suppression reached saturation (at an average of 82% inhibition), an apparent phenomenon observed regardless of the species, biomarker, or compound examined. Since cathepsin enzymes other than CatK were reported to catalyze cleavage of collagen I, it is hypothesized that CatK-mediated degradation of collagen I in bone represents ~82% of overall collagen I turnover in the body.


Subject(s)
Cathepsin K/blood , Cysteine Proteinase Inhibitors/blood , Adolescent , Adult , Aged , Animals , Biomarkers/urine , Biphenyl Compounds/blood , Biphenyl Compounds/pharmacokinetics , Biphenyl Compounds/pharmacology , Biphenyl Compounds/urine , Blood Proteins/metabolism , Cathepsin K/antagonists & inhibitors , Collagen Type I/urine , Cysteine Proteinase Inhibitors/pharmacokinetics , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/urine , Dogs , Female , Humans , Macaca mulatta , Male , Middle Aged , Peptides/urine , Protein Binding , Pyrazoles/blood , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyrazoles/urine , Rabbits , Sulfones/blood , Sulfones/pharmacokinetics , Sulfones/pharmacology , Sulfones/urine , Young Adult
7.
Proc Natl Acad Sci U S A ; 114(3): E297-E306, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28039433

ABSTRACT

Current therapies for chronic pain can have insufficient efficacy and lead to side effects, necessitating research of novel targets against pain. Although originally identified as an oncogene, Tropomyosin-related kinase A (TrkA) is linked to pain and elevated levels of NGF (the ligand for TrkA) are associated with chronic pain. Antibodies that block TrkA interaction with its ligand, NGF, are in clinical trials for pain relief. Here, we describe the identification of TrkA-specific inhibitors and the structural basis for their selectivity over other Trk family kinases. The X-ray structures reveal a binding site outside the kinase active site that uses residues from the kinase domain and the juxtamembrane region. Three modes of binding with the juxtamembrane region are characterized through a series of ligand-bound complexes. The structures indicate a critical pharmacophore on the compounds that leads to the distinct binding modes. The mode of interaction can allow TrkA selectivity over TrkB and TrkC or promiscuous, pan-Trk inhibition. This finding highlights the difficulty in characterizing the structure-activity relationship of a chemical series in the absence of structural information because of substantial differences in the interacting residues. These structures illustrate the flexibility of binding to sequences outside of-but adjacent to-the kinase domain of TrkA. This knowledge allows development of compounds with specificity for TrkA or the family of Trk proteins.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/antagonists & inhibitors , Receptor, trkA/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Kinetics , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemical synthesis , Receptor, trkA/genetics , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/chemistry , Receptor, trkB/genetics , Receptor, trkC/antagonists & inhibitors , Receptor, trkC/chemistry , Receptor, trkC/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/drug effects , Recombinant Proteins/genetics , Structure-Activity Relationship , Surface Plasmon Resonance
8.
ChemMedChem ; 10(4): 727-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25759009

ABSTRACT

With the goal of identifying inhibitors of hepatitis C virus (HCV) NS3/4a protease that are potent against a wide range of genotypes and clinically relevant mutant viruses, several subseries of macrocycles were investigated based on observations made during the discovery of MK-5172. Quinazolinone-containing macrocycles were identified as promising leads, and optimization for superior cross-genotype and mutant enzyme potency as well as rat liver and plasma concentrations following oral dosing, led to the development of MK-2748. Additional investigation of a series of bis-macrocycles containing a fused 18- and 15-membered ring system were also optimized for the same properties, leading to the discovery of MK-6325. Both compounds display the broad genotype and mutant potency necessary for clinical development as next-generation HCV NS3/4a protease inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/enzymology , Macrocyclic Compounds/pharmacology , Quinazolinones/pharmacology , Sulfones/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Hepacivirus/drug effects , Hepacivirus/genetics , Hepatitis C/drug therapy , Hepatitis C/virology , Humans , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Models, Molecular , Mutation , Quinazolinones/chemistry , Quinazolinones/pharmacokinetics , Rats , Sulfones/pharmacokinetics , Viral Nonstructural Proteins/genetics
9.
Bioorg Med Chem Lett ; 22(23): 7207-13, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23084906

ABSTRACT

A series of macrocyclic compounds containing a cyclic constraint in the P2-P4 linker region have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K, A156T, A156V, and D168V mutant activity while maintaining high rat liver exposure. The effect of the constraint is most dramatic against gt 1b A156 mutants where ~20-fold improvements in potency are achieved by introduction of a variety of ring systems into the P2-P4 linker.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Hepacivirus/enzymology , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Binding Sites , Carrier Proteins/metabolism , Catalytic Domain , Cyclization , Genotype , Half-Life , Hepacivirus/genetics , Intracellular Signaling Peptides and Proteins , Kinetics , Liver/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Molecular Docking Simulation , Mutation , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
10.
Bioorg Med Chem Lett ; 22(23): 7201-6, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23021993

ABSTRACT

A series of macrocyclic compounds containing 2-substituted-quinoline moieties have been discovered and shown to exhibit excellent HCV NS3/4a genotype 3a and genotype 1b R155K mutant activity while maintaining the high rat liver exposure. Cyclization of the 2-substituted quinoline substituent led to a series of tricyclic P2 compounds which also display superb gt3a potency.


Subject(s)
Carrier Proteins/antagonists & inhibitors , Hepacivirus/enzymology , Macrocyclic Compounds/chemistry , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Carrier Proteins/metabolism , Cyclization , Genotype , Half-Life , Hepacivirus/genetics , Intracellular Signaling Peptides and Proteins , Kinetics , Liver/metabolism , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacokinetics , Quinolines/chemistry , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
11.
Antimicrob Agents Chemother ; 56(8): 4161-7, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22615282

ABSTRACT

HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.


Subject(s)
Hepacivirus/drug effects , Protease Inhibitors/pharmacology , Quinoxalines/pharmacology , Quinoxalines/pharmacokinetics , Viral Nonstructural Proteins/antagonists & inhibitors , Amides , Animals , Antiviral Agents/pharmacology , Carbamates , Cyclopropanes , Dogs , Drug Resistance, Viral , Genotype , Hepacivirus/enzymology , Hepacivirus/genetics , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Liver/drug effects , Pan troglodytes , Quinoxalines/metabolism , Rats , Sulfonamides , Viral Load/drug effects
12.
ACS Med Chem Lett ; 3(4): 332-6, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-24900473

ABSTRACT

A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.

13.
J Med Chem ; 54(20): 7176-83, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21916489

ABSTRACT

In the present paper, design, synthesis, X-ray crystallographic analysis, and HIV-1 protease inhibitory activities of a novel class of compounds are disclosed. Compounds 28-30, 32, 35, and 40 were synthesized and found to be inhibitors of the HIV-1 protease. The crucial step in their synthesis involved an unusual endo radical cyclization process. Absolute stereochemistry of the three asymmetric centers in the above compounds have been established to be (4S,2'R,3'S) for optimal potency. X-ray crystallographic analysis has been used to determine the binding mode of the inhibitors to the HIV-1 protease.


Subject(s)
Carbamates/chemical synthesis , HIV Protease Inhibitors/chemical synthesis , HIV Protease/chemistry , Models, Molecular , Thiazepines/chemical synthesis , Carbamates/chemistry , Crystallography, X-Ray , Drug Design , HIV Protease Inhibitors/chemistry , Molecular Structure , Protein Binding , Protein Conformation , Stereoisomerism , Structure-Activity Relationship , Thiazepines/chemistry
14.
Antimicrob Agents Chemother ; 55(8): 3854-60, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21628542

ABSTRACT

Hepatitis C virus (HCV) infects an estimated 170 million individuals worldwide, and the current standard of care, a combination of pegylated interferon alpha and ribavirin, is efficacious in achieving sustained viral response in ~50% of treated patients. Novel therapies under investigation include the use of nucleoside analog inhibitors of the viral RNA-dependent RNA polymerase. NM283, a 3'-valyl ester prodrug of 2'-C-methylcytidine, has demonstrated antiviral efficacy in HCV-infected patients (N. Afdhal et al., J. Hepatol. 46[Suppl. 1]:S5, 2007; N. Afdhal et al., J. Hepatol. 44[Suppl. 2]:S19, 2006). One approach to increase the antiviral efficacy of 2'-C-methylcytidine is to increase the concentration of the active inhibitory species, the 5'-triphosphate, in infected hepatocytes. HepDirect prodrug technology can increase intracellular concentrations of a nucleoside triphosphate in hepatocytes by introducing the nucleoside monophosphate into the cell, bypassing the initial kinase step that is often rate limiting. Screening for 2'-C-methylcytidine triphosphate levels in rat liver after oral dosing identified 1-[3,5-difluorophenyl]-1,3-propandiol as an efficient prodrug modification. To determine antiviral efficacy in vivo, the prodrug was administered separately via oral and intravenous dosing to two HCV-infected chimpanzees. Circulating viral loads declined by ~1.4 log(10) IU/ml and by >3.6 log(10) IU/ml after oral and intravenous dosing, respectively. The viral loads rebounded after the end of dosing to predose levels. The results indicate that a robust antiviral response can be achieved upon administration of the prodrug.


Subject(s)
Cytidine/analogs & derivatives , Hepacivirus/drug effects , Hepatitis C/drug therapy , Prodrugs/administration & dosage , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cytidine/administration & dosage , Cytidine/pharmacology , Cytidine/therapeutic use , Cytidine Monophosphate/administration & dosage , Cytidine Monophosphate/analogs & derivatives , Cytidine Monophosphate/pharmacology , Cytidine Monophosphate/therapeutic use , Female , Hepatitis C/virology , Hepatocytes/metabolism , Macaca mulatta , Male , Pan troglodytes , Prodrugs/pharmacology , Prodrugs/therapeutic use , Pyrimidine Nucleosides/administration & dosage , Pyrimidine Nucleosides/pharmacology , Pyrimidine Nucleosides/therapeutic use , Rats , Rats, Sprague-Dawley , Viral Load/drug effects
16.
Antimicrob Agents Chemother ; 55(2): 937-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21115793

ABSTRACT

Efforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection.


Subject(s)
Antiviral Agents/administration & dosage , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Indoles/administration & dosage , Pan troglodytes/virology , Tubercidin/analogs & derivatives , Viral Load/drug effects , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cyclopropanes , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Therapy, Combination , Hepacivirus/enzymology , Hepacivirus/physiology , Hepatitis C, Chronic/virology , Indoles/pharmacology , Indoles/therapeutic use , Isoindoles , Lactams, Macrocyclic , Leucine/analogs & derivatives , Proline/analogs & derivatives , Protease Inhibitors/administration & dosage , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Sulfonamides , Treatment Outcome , Tubercidin/administration & dosage , Tubercidin/pharmacology , Tubercidin/therapeutic use , Viral Nonstructural Proteins/antagonists & inhibitors
17.
ACS Med Chem Lett ; 2(3): 207-12, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-24900304

ABSTRACT

The discovery of MK-1220 is reported along with the development of a series of HCV NS3/4A protease inhibitors containing a P2 to P4 macrocyclic constraint with improved preclinical pharmacokinetics. Optimization of the P2 heterocycle substitution pattern as well as the P3 amino acid led to compounds with greatly improved plasma exposure following oral dosing in both rats and dogs while maintaining excellent enzyme potency and cellular activity. These studies led to the identification of MK-1220.

18.
Bioorg Med Chem Lett ; 20(14): 4065-8, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20547452

ABSTRACT

A series of HIV-1 protease inhibitors containing an epsilon substituted lysinol backbone was synthesized. Two novel synthetic routes using N-boc-L-glutamic acid alpha-benzyl ester and 2,6-diaminopimelic acid were developed. Incorporation of this epsilon substituent enabled access to the S2 pocket of the enzyme, affording high potency inhibitors. Modeling studies and synthetic efforts suggest the potency increase is due to both conformational bias and van der Waals interactions with the S2 pocket.


Subject(s)
HIV Protease Inhibitors/pharmacology , Lysine/analogs & derivatives , HIV Protease Inhibitors/chemistry , Models, Molecular , Structure-Activity Relationship
19.
J Med Chem ; 53(6): 2443-63, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20163176

ABSTRACT

A new class of HCV NS3/4a protease inhibitors which contain a P2 to P4 macrocyclic constraint was designed using a molecular-modeling derived strategy. Exploration of the P2 heterocyclic region, the P2 to P4 linker, and the P1 side chain of this class of compounds via a modular synthetic strategy allowed for the optimization of enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 35b (vaniprevir, MK-7009), which is active against both the genotype 1 and genotype 2 NS3/4a protease enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Subject(s)
Hepacivirus/enzymology , Indoles/pharmacology , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Area Under Curve , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cyclopropanes , Dogs , Drug Discovery , Drug Evaluation, Preclinical , Indoles/chemistry , Indoles/pharmacokinetics , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins , Isoindoles , Lactams, Macrocyclic , Leucine/analogs & derivatives , Liver/metabolism , Macaca mulatta , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Metabolic Clearance Rate , Models, Chemical , Molecular Structure , Pan troglodytes , Proline/analogs & derivatives , Rats , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Sulfonamides , Viral Nonstructural Proteins/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism
20.
Antimicrob Agents Chemother ; 54(1): 305-11, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19841155

ABSTRACT

The administration of hepatitis C virus (HCV) NS3/4A protease inhibitors to patients with chronic HCV infections has demonstrated that they have dramatic antiviral effects and that compounds acting via this mechanism are likely to form a key component of future anti-HCV therapy. We report here on the preclinical profile of MK-7009, an inhibitor of genotype 1a and 1b proteases at subnanomolar concentrations with modestly shifted potency against genotype 2a and 2b proteases at low nanomolar concentrations. Potent activity was also observed in a cell-based HCV replicon assay in the presence of added human serum (50%). In multiple species evaluated in preclinical studies, the MK-7009 concentrations in the liver were maintained at a significant multiple of the cell-based replicon 50% effective concentration over 12 to 24 h following the administration of moderate oral doses (5 to 10 mg per kg of body weight). MK-7009 also had excellent selectivity against both a range of human proteases and a broad panel of pharmacologically relevant ion channels, receptors, and enzymes. On the basis of this favorable profile, MK-7009 was selected for clinical development and is currently being evaluated in controlled clinical trials with both healthy volunteers and HCV-infected patients.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Indoles/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Area Under Curve , Cell Line , Cyclopropanes , Dogs , Genotype , Half-Life , Hepacivirus/enzymology , Hepacivirus/genetics , Humans , Indoles/pharmacokinetics , Interferon alpha-2 , Interferon-alpha/pharmacology , Isoindoles , Lactams, Macrocyclic , Leucine/analogs & derivatives , Macaca mulatta , Pan troglodytes , Proline/analogs & derivatives , Protease Inhibitors/pharmacokinetics , Rats , Recombinant Proteins , Replicon , Substrate Specificity , Sulfonamides , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...