Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 211(Pt 2): 258-66, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18165253

ABSTRACT

Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.


Subject(s)
Flight, Animal/physiology , Animals , Biomechanical Phenomena , Models, Biological
2.
J Exp Biol ; 210(Pt 23): 4136-49, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18025013

ABSTRACT

Here we analyse aeroelastic devices in the wings of a steppe eagle Aquila nipalensis during manoeuvres. Chaotic deflections of the upperwing coverts observed using video cameras carried by the bird (50 frames s(-1)) indicate trailing-edge separation but attached flow near the leading edge during flapping and gust response, and completely stalled flows upon landing. The underwing coverts deflect automatically along the leading edge at high angle of attack. We use high-speed digital video (500 frames s(-1)) to analyse these deflections in greater detail during perching sequences indoors and outdoors. Outdoor perching sequences usually follow a stereotyped three-phase sequence comprising a glide, pitch-up manoeuvre and deep stall. During deep stall, the spread-eagled bird has aerodynamics reminiscent of a cross-parachute. Deployment of the underwing coverts is closely phased with wing sweeping during the pitch-up manoeuvre, and is accompanied by alula protraction. Surprisingly, active alula protraction is preceded by passive peeling from its tip. Indoor flights follow a stereotyped flapping perching sequence, with deployment of the underwing coverts closely phased with alula protraction and the end of the downstroke. We propose that the underwing coverts operate as an automatic high-lift device, analogous to a Kruger flap. We suggest that the alula operates as a strake, promoting formation of a leading-edge vortex on the swept hand-wing when the arm-wing is completely stalled, and hypothesise that its active protraction is stimulated by its initial passive deflection. These aeroelastic devices appear to be used for flow control to enhance unsteady manoeuvres, and may also provide sensory feedback.


Subject(s)
Eagles/physiology , Video Recording/instrumentation , Wings, Animal/physiology , Animals , Biomechanical Phenomena , Feathers/physiology , Flight, Animal/physiology , Male , Models, Biological , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...