Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(5): 3419-3429, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38365194

ABSTRACT

Herein, we describe a dual photocatalytic system to synthesize phenol-pyridinium salts using visible light. Utilizing both electron donor-acceptor (EDA) complex and iridium(III) photocatalytic cycles, the C-N cross-coupling of unprotected phenols and pyridines proceeds in the presence of oxygen to furnish pyridinium salts. Photocatalytic generation of phenoxyl radical cations also enabled a nucleophilic aromatic substitution (SNAr) of a fluorophenol with an electron-poor pyridine. Spectroscopic experiments were conducted to probe the mechanism and reaction selectivity. The unique reactivity of these phenol-pyridinium salts were displayed in several derivatization reactions, providing rapid access to a diverse chemical space.

2.
Nat Prod Rep ; 41(2): 208-227, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37294301

ABSTRACT

Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.


Subject(s)
Biological Products , Phenol , Oxidative Coupling , Phenols , Oxidative Stress
3.
Org Lett ; 24(40): 7250-7254, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36094351

ABSTRACT

A photocatalytic method to selectively synthesize 4-hydroperoxy-2,5-cyclohexadienones from para-alkyl phenols is disclosed. This photosensitized singlet oxygen approach functionalized a variety of electronically diverse para-alkyl phenols in 27-99% isolated yields. Utilizing this dearomative oxidation, (±)-stemenone B and (±)-parvistilbine B were synthesized in 9 and 11 steps, respectively, from commercially available starting materials. Additional experiments revealed the dramatic influence of base and solvent on the selectivity while providing insight into the mechanism of this transformation.


Subject(s)
Phenols , Singlet Oxygen , Oxidation-Reduction , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...