Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
2.
Ann Clin Transl Neurol ; 10(11): 1972-1984, 2023 11.
Article in English | MEDLINE | ID: mdl-37632133

ABSTRACT

OBJECTIVE: We created WiTNNess as a hybrid prospective/cross-sectional observational study to simulate a clinical trial for infantile-onset TNNT1 myopathy. Our aims were to identify populations for future trial enrollment, rehearse outcome assessments, specify endpoints, and refine trial logistics. METHODS: Eligible participants had biallelic pathogenic variants of TNNT1 and infantile-onset proximal weakness without confounding conditions. The primary endpoint was ventilator-free survival. "Thriving" was a secondary endpoint defined as the ability to swallow and grow normally without non-oral feeding support. Endpoints of gross motor function included independent sitting and standing as defined by the Word Health Organization, a novel TNNT1 abbreviated motor score, and video mapping of limb movement. We recorded adverse events, concomitant medications, and indices of organ function to serve as comparators of safety in future trials. RESULTS: Sixteen children were enrolled in the aggregate cohort (6 prospective, 10 cross-sectional; median census age 2.3 years, range 0.5-13.8). Median ventilator-free survival was 20.2 months and probability of death or permanent mechanical ventilation was 100% by age 60 months. All six children (100%) in the prospective arm failed to thrive by age 12 months. Only 2 of 16 (13%) children in the aggregate cohort sat independently and none stood alone. Novel exploratory motor assessments also proved informative. Laboratory and imaging data suggest that primary manifestations of TNNT1 deficiency are restricted to skeletal muscle. INTERPRETATION: WiTNNess allowed us to streamline and economize the collection of historical control data without compromising scientific rigor, and thereby establish a sound operational framework for future clinical trials.


Subject(s)
Muscle, Skeletal , Muscular Diseases , Child , Humans , Infant , Child, Preschool , Adolescent , Cross-Sectional Studies , Prospective Studies , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/pathology , Respiration, Artificial
3.
Brain ; 145(11): 3872-3885, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35136953

ABSTRACT

Mutations in nitrogen permease regulator-like 3 (NPRL3), a component of the GATOR1 complex within the mTOR pathway, are associated with epilepsy and malformations of cortical development. Little is known about the effects of NPRL3 loss on neuronal mTOR signalling and morphology, or cerebral cortical development and seizure susceptibility. We report the clinical phenotypic spectrum of a founder NPRL3 pedigree (c.349delG, p.Glu117LysFS; n = 133) among Old Order Mennonites dating to 1727. Next, as a strategy to define the role of NPRL3 in cortical development, CRISPR/Cas9 Nprl3 knockout in Neuro2a cells in vitro and in foetal mouse brain in vivo was used to assess the effects of Nprl3 knockout on mTOR activation, subcellular mTOR localization, nutrient signalling, cell morphology and aggregation, cerebral cortical cytoarchitecture and network integrity. The NPRL3 pedigree exhibited an epilepsy penetrance of 28% and heterogeneous clinical phenotypes with a range of epilepsy semiologies, i.e. focal or generalized onset, brain imaging abnormalities, i.e. polymicrogyria, focal cortical dysplasia or normal imaging, and EEG findings, e.g. focal, multi-focal or generalized spikes, focal or generalized slowing. Whole exome analysis comparing a seizure-free group (n = 37) to those with epilepsy (n = 24) to search for gene modifiers for epilepsy did not identify a unique genetic modifier that explained the variability in seizure penetrance in this cohort. Nprl3 knockout in vitro caused mTOR pathway hyperactivation, cell soma enlargement and the formation of cellular aggregates seen in time-lapse videos that were prevented with the mTOR inhibitors rapamycin or torin1. In Nprl3 knockout cells, mTOR remained localized on the lysosome in a constitutively active conformation, as evidenced by phosphorylation of ribosomal S6 and 4E-BP1 proteins, even under nutrient starvation (amino acid-free) conditions, demonstrating that Nprl3 loss decouples mTOR activation from neuronal metabolic state. To model human malformations of cortical development associated with NPRL3 variants, we created a focal Nprl3 knockout in foetal mouse cortex by in utero electroporation and found altered cortical lamination and white matter heterotopic neurons, effects which were prevented with rapamycin treatment. EEG recordings showed network hyperexcitability and reduced seizure threshold to pentylenetetrazol treatment. NPRL3 variants are linked to a highly variable clinical phenotype which we propose results from mTOR-dependent effects on cell structure, cortical development and network organization.


Subject(s)
Epilepsy , Malformations of Cortical Development , Animals , Humans , Mice , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Malformations of Cortical Development/genetics , GTPase-Activating Proteins/genetics , Epilepsy/genetics , Neurons/metabolism , Seizures/genetics , Sirolimus
4.
Muscle Nerve ; 65(1): 51-59, 2022 01.
Article in English | MEDLINE | ID: mdl-34606118

ABSTRACT

INTRODUCTION/AIMS: Intrathecal administration of nusinersen is challenging in patients with spinal muscular atrophy (SMA) who have spine deformities or fusions. We prospectively studied the safety and efficacy of nusinersen administration via an indwelling subcutaneous intrathecal catheter (SIC) for SMA patients with advanced disease. METHODS: Seventeen participants commenced nusinersen therapy between 2.7 and 31.5 years of age and received 9 to 12 doses via SIC. Safety was assessed in all participants. A separate efficacy analysis comprised 11 nonambulatory, treatment-naive SMA patients (18.1 ± 6.8 years) with three SMN2 copies and complex spine anatomy. RESULTS: In the safety analysis, 14 treatment-related adverse events (AEs) occurred among 12 (71%) participants; all were related to the SIC and not nusinersen. Device-related AEs interfered with 2.5% of nusinersen doses. Four SICs (24%) required surgical revision due to mechanical malfunction with or without cerebrospinal fluid leak (n = 2), and one (6%) was removed due to Staphylococcus epidermidis meningitis. In the efficacy analysis, mean performance on the nine-hole peg test improved in dominant (15.9%, P = 0.012) and nondominant (19.0%, P = 0.008) hands and grip strength increased by 44.9% (P = 0.031). We observed no significant changes in motor scales, muscle force, pulmonary function, or SMA biomarkers. All participants in the efficacy cohort reported one or more subjective improvement(s) in endurance, purposeful hand use, arm strength, head control, and/or speech. DISCUSSION: For SMA patients with complex spine anatomy, the SIC allows for reliable outpatient administration of nusinersen that results in meaningful improvements in upper limb function, but introduces risks of technical malfunction and iatrogenic infection.


Subject(s)
Muscular Atrophy, Spinal , Oligonucleotides , Catheters , Humans , Injections, Spinal/methods , Muscular Atrophy, Spinal/drug therapy
6.
Mol Genet Metab ; 131(3): 325-340, 2020 11.
Article in English | MEDLINE | ID: mdl-33069577

ABSTRACT

Glutaric acidemia type 1 (GA1) is a disorder of cerebral organic acid metabolism resulting from biallelic mutations of GCDH. Without treatment, GA1 causes striatal degeneration in >80% of affected children before two years of age. We analyzed clinical, biochemical, and developmental outcomes for 168 genotypically diverse GA1 patients managed at a single center over 31 years, here separated into three treatment cohorts: children in Cohort I (n = 60; DOB 2006-2019) were identified by newborn screening (NBS) and treated prospectively using a standardized protocol that included a lysine-free, arginine-enriched metabolic formula, enteral l-carnitine (100 mg/kg•day), and emergency intravenous (IV) infusions of dextrose, saline, and l-carnitine during illnesses; children in Cohort II (n = 57; DOB 1989-2018) were identified by NBS and treated with natural protein restriction (1.0-1.3 g/kg•day) and emergency IV infusions; children in Cohort III (n = 51; DOB 1973-2016) did not receive NBS or special diet. The incidence of striatal degeneration in Cohorts I, II, and III was 7%, 47%, and 90%, respectively (p < .0001). No neurologic injuries occurred after 19 months of age. Among uninjured children followed prospectively from birth (Cohort I), measures of growth, nutritional sufficiency, motor development, and cognitive function were normal. Adherence to metabolic formula and l-carnitine supplementation in Cohort I declined to 12% and 32%, respectively, by age 7 years. Cessation of strict dietary therapy altered plasma amino acid and carnitine concentrations but resulted in no serious adverse outcomes. In conclusion, neonatal diagnosis of GA1 coupled to management with lysine-free, arginine-enriched metabolic formula and emergency IV infusions during the first two years of life is safe and effective, preventing more than 90% of striatal injuries while supporting normal growth and psychomotor development. The need for dietary interventions and emergency IV therapies beyond early childhood is uncertain.


Subject(s)
Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brain/metabolism , Corpus Striatum/metabolism , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Amino Acid Metabolism, Inborn Errors/diet therapy , Amino Acid Metabolism, Inborn Errors/epidemiology , Amino Acid Metabolism, Inborn Errors/metabolism , Brain/pathology , Brain Diseases, Metabolic/diet therapy , Brain Diseases, Metabolic/epidemiology , Brain Diseases, Metabolic/metabolism , Carnitine/metabolism , Child , Child, Preschool , Corpus Striatum/pathology , Diet , Female , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Infant , Infant, Newborn , Lysine/metabolism , Male
7.
Mol Genet Metab ; 129(3): 193-206, 2020 03.
Article in English | MEDLINE | ID: mdl-31980395

ABSTRACT

Over the past three decades, we studied 184 individuals with 174 different molecular variants of branched-chain α-ketoacid dehydrogenase activity, and here delineate essential clinical and biochemical aspects of the maple syrup urine disease (MSUD) phenotype. We collected data about treatment, survival, hospitalization, metabolic control, and liver transplantation from patients with classic (i.e., severe; n = 176), intermediate (n = 6) and intermittent (n = 2) forms of MSUD. A total of 13,589 amino acid profiles were used to analyze leucine tolerance, amino acid homeostasis, estimated cerebral amino acid uptake, quantitative responses to anabolic therapy, and metabolic control after liver transplantation. Standard instruments were used to measure neuropsychiatric outcomes. Despite advances in clinical care, classic MSUD remains a morbid and potentially fatal disorder. Stringent dietary therapy maintains metabolic variables within acceptable limits but is challenging to implement, fails to restore appropriate concentration relationships among circulating amino acids, and does not fully prevent cognitive and psychiatric disabilities. Liver transplantation eliminates the need for a prescription diet and safeguards patients from life-threatening metabolic crises, but is associated with predictable morbidities and does not reverse pre-existing neurological sequelae. There is a critical unmet need for safe and effective disease-modifying therapies for MSUD which can be implemented early in life. The biochemistry and physiology of MSUD and its response to liver transplantation afford key insights into the design of new therapies based on gene replacement or editing.


Subject(s)
3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/genetics , Amino Acids, Branched-Chain/metabolism , Biomarkers/blood , Leucine/blood , Liver Transplantation , Maple Syrup Urine Disease/diet therapy , Maple Syrup Urine Disease/therapy , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Adolescent , Adult , Child , Child, Preschool , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cohort Studies , Diet , Female , Homozygote , Humans , Infant , Leucine/metabolism , Male , Maple Syrup Urine Disease/genetics , Maple Syrup Urine Disease/metabolism , Mental Disorders/metabolism , Mental Disorders/physiopathology , Middle Aged , Phenotype
8.
Hepatology ; 71(6): 1923-1939, 2020 06.
Article in English | MEDLINE | ID: mdl-31553814

ABSTRACT

BACKGROUND AND AIMS: We describe the pathophysiology, treatment, and outcome of Crigler-Najjar type 1 syndrome (CN1) in 28 UGT1A1 c.222C>A homozygotes followed for 520 aggregate patient-years. APPROACH AND RESULTS: Unbound ("free") bilirubin (Bf ) was measured in patient sera to characterize the binding of unconjugated bilirubin (BT ) to albumin (A) and validate their molar concentration ratio (BT /A) as an index of neurological risk. Two custom phototherapy systems were constructed from affordable materials to provide high irradiance in the outpatient setting; light dose was titrated to keep BT /A at least 30% below intravascular BT binding capacity (i.e., BT /A = 1.0). Categorical clinical outcomes were ascertained by chart review, and a measure (Lf ) was used to quantify liver fibrosis. Unbound bilirubin had a nonlinear relationship to BT (R2  = 0.71) and BT /A (R2  = 0.76), and Bf as a percentage of BT correlated inversely to the bilirubin-albumin equilibrium association binding constant (R2  = 0.69), which varied 10-fold among individuals. In newborns with CN1, unconjugated bilirubin increased 4.3 ± 1.1 mg/dL per day. Four (14%) neonates developed kernicterus between days 14 and 45 postnatal days of life; peak BT  ≥ 30 mg/dL and BT /A ≥ 1.0 mol:mol were equally predictive of perinatal brain injury (sensitivity 100%, specificity 93.3%, positive predictive value 88.0%), and starting phototherapy after age 13 days increased this risk 3.5-fold. Consistent phototherapy with 33-103 µW/cm2 •nm for 9.2 ± 1.1 hours/day kept BT and BT /A within safe limits throughout childhood, but BT increased 0.46 mg/dL per year to reach dangerous concentrations by 18 years of age. Liver transplantation (n = 17) normalized BT and eliminated phototherapy dependence. Liver explants showed fibrosis ranging from mild to severe. CONCLUSION: Seven decades after its discovery, CN1 remains a morbid and potentially fatal disorder.


Subject(s)
Bilirubin , Brain Diseases , Crigler-Najjar Syndrome , Liver Cirrhosis , Phototherapy/methods , Serum Albumin/analysis , Adolescent , Bilirubin/blood , Bilirubin/metabolism , Brain Diseases/blood , Brain Diseases/diagnosis , Brain Diseases/etiology , Brain Diseases/prevention & control , Crigler-Najjar Syndrome/blood , Crigler-Najjar Syndrome/genetics , Crigler-Najjar Syndrome/physiopathology , Crigler-Najjar Syndrome/therapy , Female , Glucuronosyltransferase/genetics , Homozygote , Humans , Infant, Newborn , Kaplan-Meier Estimate , Liver Cirrhosis/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/etiology , Liver Cirrhosis/therapy , Liver Transplantation/methods , Liver Transplantation/statistics & numerical data , Male , Risk Assessment , United States
9.
Mol Genet Metab ; 126(4): 475-488, 2019 04.
Article in English | MEDLINE | ID: mdl-30691927

ABSTRACT

GM3 synthase, encoded by ST3GAL5, initiates synthesis of all downstream cerebral gangliosides. Here, we present biochemical, functional, and natural history data from 50 individuals homozygous for a pathogenic ST3GAL5 c.862C>T founder allele (median age 8.1, range 0.7-30.5 years). GM3 and its derivatives were undetectable in plasma. Weight and head circumference were normal at birth and mean Apgar scores were 7.7 ±â€¯2.0 (1 min) and 8.9 ±â€¯0.5 (5 min). Somatic growth failure, progressive microcephaly, global developmental delay, visual inattentiveness, and dyskinetic movements developed within a few months of life. Infantile-onset epileptic encephalopathy was characterized by a slow, disorganized, high-voltage background, poor state transitions, absent posterior rhythm, and spike trains from multiple independent cortical foci; >90% of electrographic seizures were clinically silent. Hearing loss affected cochlea and central auditory pathways and 76% of children tested failed the newborn hearing screen. Development stagnated early in life; only 13 (26%) patients sat independently (median age 30 months), three (6%) learned to crawl, and none achieved reciprocal communication. Incessant irritability, often accompanied by insomnia, began during infancy and contributed to high parental stress. Despite catastrophic neurological dysfunction, neuroimaging showed only subtle or no destructive changes into late childhood and hospitalizations were surprisingly rare (0.2 per patient per year). Median survival was 23.5 years. Our observations corroborate findings from transgenic mice which indicate that gangliosides might have a limited role in embryonic neurodevelopment but become vital for postnatal brain growth and function. These results have critical implications for the design and implementation of ganglioside restitution therapies.


Subject(s)
Epilepsy/drug therapy , Epilepsy/genetics , Gangliosides/physiology , Sialyltransferases/deficiency , Adolescent , Adult , Alleles , Apgar Score , Child , Child, Preschool , Epilepsy/complications , Female , Glycosphingolipids/blood , Homozygote , Humans , Infant , Male , Microcephaly , Retrospective Studies , Seizures , Sialyltransferases/blood , Sialyltransferases/genetics , United States , Young Adult
10.
Hum Mol Genet ; 28(4): 525-538, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30304524

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are critical for protein translation. Pathogenic variants of ARSs have been previously associated with peripheral neuropathy and multisystem disease in heterozygotes and homozygotes, respectively. We report seven related children homozygous for a novel mutation in tyrosyl-tRNA synthetase (YARS, c.499C > A, p.Pro167Thr) identified by whole exome sequencing. This variant lies within a highly conserved interface required for protein homodimerization, an essential step in YARS catalytic function. Affected children expressed a more severe phenotype than previously reported, including poor growth, developmental delay, brain dysmyelination, sensorineural hearing loss, nystagmus, progressive cholestatic liver disease, pancreatic insufficiency, hypoglycemia, anemia, intermittent proteinuria, recurrent bloodstream infections and chronic pulmonary disease. Related adults heterozygous for YARS p.Pro167Thr showed no evidence of peripheral neuropathy on electromyography, in contrast to previous reports for other YARS variants. Analysis of YARS p.Pro167Thr in yeast complementation assays revealed a loss-of-function, hypomorphic allele that significantly impaired growth. Recombinant YARS p.Pro167Thr demonstrated normal subcellular localization, but greatly diminished ability to homodimerize in human embryonic kidney cells. This work adds to a rapidly growing body of research emphasizing the importance of ARSs in multisystem disease and significantly expands the allelic and clinical heterogeneity of YARS-associated human disease. A deeper understanding of the role of YARS in human disease may inspire innovative therapies and improve care of affected patients.


Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Loss of Function Mutation/genetics , Tyrosine-tRNA Ligase/genetics , Adult , Catalytic Domain/genetics , Child, Preschool , Female , Genetic Diseases, Inborn/physiopathology , Hearing Loss, Sensorineural/diagnostic imaging , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/physiopathology , Heterozygote , Homozygote , Humans , Infant , Infant, Newborn , Male , Mutation , Pedigree , Phenotype , Severity of Illness Index , Exome Sequencing , Yeasts/genetics
11.
PLoS One ; 13(9): e0202104, 2018.
Article in English | MEDLINE | ID: mdl-30188899

ABSTRACT

We correlate chromosome 5 haplotypes and SMN2 copy number with disease expression in 42 Mennonite and 14 Amish patients with spinal muscular atrophy (SMA). A single haplotype (A1) with 1 copy of SMN2 segregated among all Amish patients. SMN1 deletions segregated on four different Mennonite haplotypes that carried 1 (M1a, M1b, M1c) or 2 (M2) copies of SMN2. DNA microsatellite and microarray data revealed structural similarities among A1, M1a, M1b, and M2. Clinical data were parsed according to both SMN1 genotype and SMN2 copy number (2 copies, n = 44; 3 copies, n = 9; or 4 copies, n = 3). No infant with 2 copies of SMN2 sat unassisted. In contrast, all 9 Mennonites with the M1a/M2 genotype (3 copies of SMN2) sat during infancy at a median age of 7 months, and 5 (56%) walked and dressed independently at median ages of 18 and 36 months, respectively. All are alive at a median age of 11 (range 2-31) years without ventilatory support. Among 13 Amish and 26 Mennonite patients with 2 copies of SMN2 who did not receive feeding or ventilatory support, A1/A1 as compared to M1a/M1a genotype was associated with earlier clinical onset (p = 0.0040) and shorter lifespan (median survival 3.9 versus 5.7 months, p = 0.0314). These phenotypic differences were not explained by variation in SMN1 deletion size or SMN2 coding sequence, which were conserved across haplotypes. Distinctive features of SMA within Plain communities provide a population-specific framework to study variations of disease expression and the impact of disease-modifying therapies administered early in life.


Subject(s)
Amish/genetics , Chromosomes, Human, Pair 5/genetics , Gene Dosage , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Survival of Motor Neuron 2 Protein/genetics
12.
J Pediatr Orthop ; 38(10): e610-e617, 2018.
Article in English | MEDLINE | ID: mdl-30134351

ABSTRACT

BACKGROUND: Many patients with spinal muscular atrophy (SMA) who might benefit from intrathecal antisense oligonucleotide (nusinersen) therapy have scoliosis or spinal fusion that precludes safe drug delivery. To circumvent spinal pathology, we designed a novel subcutaneous intrathecal catheter (SIC) system by connecting an intrathecal catheter to an implantable infusion port. METHODS: Device safety and tolerability were tested in 10 SMA patients (age, 5.4 to 30.5 y; 80% with 3 copies of SMN2); each received 3 sequential doses of nusinersen (n=30 doses). Pretreatment disease burden was evaluated using the Revised Hammersmith Scale, dynamometry, National Institutes of Health pegboard, pulmonary function testing, electromyography, and 2 health-related quality of life tools. RESULTS: Device implantation took ≤2 hours and was well tolerated. All outpatient nusinersen doses were successfully administered via SIC within 20 minutes on the first attempt, and required no regional or systemic analgesia, cognitive distraction, ultrasound guidance, respiratory precautions, or sedation. Cerebrospinal fluid withdrawn from the SIC had normal levels of glucose and protein; cerebrospinal fluid white blood cells were slightly elevated in 2 (22%) of 9 specimens (median, 1 cell/µL; range, 0 to 12 cells/µL) and red blood cells were detected in 7 (78%) specimens (median, 4; range, 0 to 2930 cells/µL). DISCUSSION: Preliminary observations reveal the SIC to be relatively safe and well tolerated in SMA patients with advanced disease and spinal fusion. The SIC warrants further study and, if proven effective in larger trials of longer duration, could double the number of patients able to receive nusinersen worldwide while reducing administration costs 5- to 10-fold.


Subject(s)
Catheterization/instrumentation , Injections, Spinal/methods , Muscular Atrophy, Spinal/drug therapy , Oligonucleotides/administration & dosage , Adult , Child , Female , Humans , Male , Outpatients , Pain Management , Quality of Life , Spinal Fusion/adverse effects
13.
Hum Mol Genet ; 27(18): 3272-3282, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29931346

ABSTRACT

We describe the natural history of 'Amish' nemaline myopathy (ANM), an infantile-onset, lethal disease linked to a pathogenic c.505G>T nonsense mutation of TNNT1, which encodes the slow fiber isoform of troponin T (TNNT1; a.k.a. TnT). The TNNT1 c.505G>T allele has a carrier frequency of 6.5% within Old Order Amish settlements of North America. We collected natural history data for 106 ANM patients born between 1923 and 2017. Over the last two decades, mean age of molecular diagnosis was 16 ± 27 days. TNNT1 c.505G>T homozygotes were normal weight at birth but failed to thrive by age 9 months. Presenting neonatal signs were axial hypotonia, hip and shoulder stiffness, and tremors, followed by progressive muscle weakness, atrophy and contractures. Affected children developed thoracic rigidity, pectus carinatum and restrictive lung disease during infancy, and all succumbed to respiratory failure by 6 years of age (median survival 18 months, range 0.2-66 months). Muscle histology from two affected children showed marked fiber size variation owing to both Type 1 myofiber smallness (hypotrophy) and Type 2 fiber hypertrophy, with evidence of nemaline rods, myofibrillar disarray and vacuolar pathology in both fiber types. The truncated slow TNNT1 (TnT) fragment (p.Glu180Ter) was undetectable in ANM muscle, reflecting its rapid proteolysis and clearance from sarcoplasm. Similar functional and histological phenotypes were observed in other human cohorts and two transgenic murine models (Tnnt1-/- and Tnnt1 c.505G>T). These findings have implications for emerging molecular therapies, including the suitably of TNNT1 gene replacement for newborns with ANM or other TNNT1-associated myopathies.


Subject(s)
Muscle Weakness/genetics , Muscle, Skeletal/pathology , Myopathies, Nemaline/genetics , Troponin T/genetics , Amish/genetics , Animals , Child , Codon, Nonsense/genetics , Female , Homozygote , Humans , Infant, Newborn , Male , Mice , Muscle Weakness/diagnosis , Muscle Weakness/physiopathology , Muscle, Skeletal/metabolism , Myopathies, Nemaline/diagnosis , Myopathies, Nemaline/physiopathology , Pathology, Molecular , Phenotype , Protein Isoforms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...