Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hippocampus ; 32(7): 529-551, 2022 07.
Article in English | MEDLINE | ID: mdl-35716117

ABSTRACT

Sexual activity causes differential changes in the expression of markers of neural activation (c-Fos and ΔFosB) and neural plasticity (Arc and BDNF/trkB), as determined either by Western Blot (BDNF, trkB, Arc, and ΔFosB) or immunohistochemistry (BDNF, trkB, Arc, and c-Fos), in the hippocampus of male Roman high (RHA) and low avoidance (RLA) rats, two psychogenetically selected rat lines that display marked differences in sexual behavior (RHA rats exhibit higher sexual motivation and better copulatory performance than RLA rats). Both methods showed (with some differences) that sexual activity modifies the expression levels of these markers in the hippocampus of Roman rats depending on: (i) the level of sexual experience, that is, changes were usually more evident in sexually naïve than in experienced rats; (ii) the hippocampal partition, that is, BDNF and Arc increased in the dorsal but tended to decrease in the ventral hippocampus; (iii) the marker considered, that is, in sexually experienced animals BDNF, c-Fos, and Arc levels were similar to those of controls, while ΔFosB levels increased; and (iv) the rat line, that is, changes were usually larger in RHA than RLA rats. These findings resemble those of early studies in RHA and RLA rats showing that sexual activity influences the expression of these markers in the nucleus accumbens, medial prefrontal cortex, and ventral tegmental area, and show for the first time that also in the hippocampus sexual activity induces neural activation and plasticity, events that occur mainly during the first phase of the acquisition of sexual experience and depend on the genotypic/phenotypic characteristics of the animals.


Subject(s)
Brain-Derived Neurotrophic Factor , Hippocampus , Animals , Avoidance Learning/physiology , Brain-Derived Neurotrophic Factor/metabolism , Cytoskeletal Proteins/metabolism , Hippocampus/metabolism , Male , Nerve Tissue Proteins/metabolism , Neuronal Plasticity , Nucleus Accumbens , Proto-Oncogene Proteins c-fos/metabolism , Rats , Receptor, trkB/metabolism
2.
Int J Mol Sci ; 23(7)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35408995

ABSTRACT

We have previously shown that bilateral common carotid artery occlusion followed by reperfusion (BCCAO/R) is a model to study early hypoperfusion/reperfusion-induced changes in biomarkers of the tissue physiological response to oxidative stress and inflammation. Thus in this study, we investigate with immunochemical assays if a single dose of beta-caryophyllene (BCP), administered before the BCCAO/R, can modulate the TRPV1, BDNF, and trkB receptor in the brain cortex; the glial markers GFAP and Iba1 were also examined. Frontal and temporal-occipital cortical regions were analyzed in two groups of male rats, sham-operated and submitted to BCCAO/R. Six hours before surgery, one group was gavage fed a dose of BCP (40 mg/per rat in 300 µL of sunflower oil), the other was pre-treated with the vehicle alone. Western blot analysis showed that, in the frontal cortex of vehicle-treated rats, the BCCAO/R caused a TRPV1 decrease, an increment of trkB and GFAP, no change in BDNF and Iba1. The BCP treatment caused a decrease of BDNF and an increase of trkB levels in both sham and BCCAO/R conditions while inducing opposite changes in the case of TRPV1, whose levels became higher in BCCAO/R and lower in sham conditions. Present results highlight the role of BCP in modulating early events of the cerebral inflammation triggered by the BCCAO/R through the regulation of TRPV1 and the BDNF-trkB system.


Subject(s)
Brain Ischemia , Reperfusion Injury , Animals , Anti-Inflammatory Agents/therapeutic use , Brain Ischemia/drug therapy , Brain-Derived Neurotrophic Factor/metabolism , Cerebral Cortex/metabolism , Inflammation/drug therapy , Male , Polycyclic Sesquiterpenes , Rats , Rats, Wistar , Receptor, trkB , Reperfusion , Reperfusion Injury/drug therapy , TRPV Cation Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...