Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(10): 12030-12042, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32013387

ABSTRACT

Efficient operation is crucial for the deployment of photoelectrochemical CO2 reduction devices for large-scale artificial photosynthesis. In these devices, undesired transport of CO2 reduction products from the reduction electrode to the oxidation electrode may occur through a liquid electrolyte and an ion exchange membrane, reducing device productivity and increasing the energy required for product purification. Our work investigated the CO2 reduction product crossover through ion exchange membranes separating the cathode and anode compartments in CO2 reduction cells. The concentrations of liquid products produced by CO2 reduction on copper foil were measured. A systematic approach for the investigation of product crossover was developed. The crossover of products was analyzed over a range of working electrode potentials (-1.08 V vs RHE to -0.88 V vs RHE) in cells employing a commercial Selemion AMV membrane and a new poly(vinylimidazolium) family of ion exchange membranes with variable chemical and structural properties. We found that product loss due to electromigration of charged species in the device was more significant than product loss due to diffusion of uncharged species. To reduce the crossover of CO2 reduction products, the influence of membrane properties such as the ionic conductivity and water volume fraction was investigated for the Selemion AMV membrane and poly(vinylimidazolium) membranes with variable material properties. We show that the water volume fraction and, by extension, ionic conductivity of the membrane may be controlled to reduce product crossover in CO2 reduction artificial photosynthesis devices.

2.
Appl Biochem Biotechnol ; 162(1): 208-20, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19697159

ABSTRACT

The nitrogen-fixing nonheterocystous cyanobacterium Plectonema boryanum was used as a model organism to study hydrogen generation by indirect biophotolysis in nitrogen-limited batch cultures that were continuously illuminated and sparged with argon/CO(2) to maintain anaerobiosis. The highest hydrogen-production rate (i.e., 0.18 mL/mg day or 7.3 micromol/mg day) was observed in cultures with an initial medium nitrate concentration of 1 mM at a light intensity of 100 micromol/m(2) s. The addition of photosystem II (PSII) inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not reduce hydrogen-production rates relative to unchallenged controls for 50 to 150 h, and intracellular glycogen concentrations decreased significantly during the hydrogen generation period. The insensitivity of the hydrogen-production process to DCMU is indicative of the fact that hydrogen was not derived from water splitting at PSII (i.e., direct biophotolysis) but rather from electrons provided by intracellular glycogen reserves (i.e., indirect biophotolysis). It was shown that hydrogen generation could be sustained for long time periods by subjecting the cultures to alternating cycles of aerobic, nitrogen-limited growth and anaerobic hydrogen production.


Subject(s)
Culture Techniques/methods , Hydrogen/metabolism , Nitrogen Fixation , Photolysis , Plectonema/metabolism , Aerobiosis , Anaerobiosis , Culture Media/chemistry , Diuron/pharmacology , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Light , Nitrates/pharmacology , Plectonema/drug effects , Plectonema/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...