Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 11: 101, 2020.
Article in English | MEDLINE | ID: mdl-32117131

ABSTRACT

Variation in the microbiome among individual organisms may play a critical role in the relative susceptibility of those organisms to infection, disease, and death. However, predicting microbiome function is difficult because of spatial and temporal variation in microbial diversity, and taxonomic diversity is not predictive of microbiome functional diversity. Addressing this issue may be particularly important when addressing pandemic diseases, such as the global amphibian die-off associated with Bd. Some of the most important factors in probiotic development for disease treatment are whether bacteria with desired function can be found on native amphibians in the local environment. To address this issue, we isolated, sequenced, and assayed the cutaneous bacterial communities of Plethodon cinereus along a gradient of land use change. Our results suggest that cutaneous community composition, but not overall diversity, change with changes in land use, but this does not correspond to significant change in Bd-inhibitory function. We found that Bd-inhibition is a functionally redundant trait, but that level of inhibition varies over phylogenetic, spatial, and temporal scales. This research provides further evidence for the importance of continued examination of amphibian microbial communities across environmental gradients, including biotic and abiotic interactions, when considering disease dynamics.

2.
J Cereb Blood Flow Metab ; 33(10): 1612-20, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23860373

ABSTRACT

Pharmacologic inactivation or genetic deletion of adenosine A2A receptors protects ischemic neurons in adult animals, but studies in neonatal hypoxia-ischemia (H-I) are inconclusive. The present study in neonatal piglets examined the hypothesis that A2A receptor signaling after reoxygenation from global H-I contributes to injury in highly vulnerable striatal neurons where A2A receptors are enriched. A2A receptor immunoreactivity was detected in striatopallidal neurons. In nonischemic piglets, direct infusion of the selective A2A receptor agonist CGS 21680 through microdialysis probes into putamen increased phosphorylation of N-methyl-D-aspartic acid (NMDA) receptor NR1 subunit and Na(+),K(+)-ATPase selectively at protein kinase A (PKA)-sensitive sites. In ischemic piglets, posttreatment with SCH 58261, a selective A2A receptor antagonist, improved early neurologic recovery and preferentially protected striatopallidal neurons. SCH 58261 selectively inhibited the ischemia-induced phosphorylation of NR1, Na(+),K(+)-ATPase, and cAMP-regulated phosphoprotein 32 KDa (DARPP32) at PKA-sensitive sites at 3 hours of recovery and improved Na(+),K(+)-ATPase activity. SCH 58261 also suppressed ischemia-induced protein nitration and oxidation. Thus, A2A receptor activation during reoxygenation contributes to the loss of a subpopulation of neonatal putamen neurons after H-I. Its toxic signaling may be related to DARPP32-dependent phosphorylation of PKA-sensitive sites on NR1 and Na(+),K(+)-ATPase, thereby augmenting excitotoxicity-induced oxidative stress after reoxygenation.


Subject(s)
Cerebrovascular Circulation , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Receptor, Adenosine A2A/metabolism , Adenosine/administration & dosage , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine A2 Receptor Agonists/administration & dosage , Adenosine A2 Receptor Agonists/pharmacology , Adenosine A2 Receptor Antagonists/administration & dosage , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/therapeutic use , Animals , Animals, Newborn , Blood Flow Velocity/drug effects , Blood Flow Velocity/physiology , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/prevention & control , Immunohistochemistry , Laser-Doppler Flowmetry , Male , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Oxidative Stress/drug effects , Phenethylamines/administration & dosage , Phenethylamines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Sus scrofa , Triazoles/administration & dosage , Triazoles/pharmacology , Triazoles/therapeutic use
3.
Anesth Analg ; 115(3): 627-37, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22745113

ABSTRACT

BACKGROUND: The implementation and clinical efficacy of hypothermia in neonatal hypoxic-ischemic (HI) encephalopathy are limited, in part, by the delay in instituting hypothermia and access to equipment. In a piglet model of HI, half of the neurons in putamen already showed ischemic cytopathology by 6 hours of recovery. We tested the hypothesis that treatment with the superoxide dismutase-catalase mimetic EUK-134 at 30 minutes of recovery provides additive neuronal protection when combined with 1 day of whole-body hypothermia implemented 4 hours after resuscitation. METHODS: Anesthetized piglets were subjected to 40 minutes of hypoxia (10% inspired oxygen) followed by 7 minutes of airway occlusion and resuscitation. Body temperature was maintained at 38.5°C in normothermic groups and at 34°C in hypothermic groups. All groups were mechanically ventilated, sedated, and received muscle relaxants during the first day of recovery. Neuropathology was assessed by profile and stereological cell-counting methods. RESULTS: At 10 days of recovery, neuronal viability in putamen of a normothermic group treated with saline vehicle was reduced to 17% ± 6% (±95% confidence interval) of the value in a sham-operated control group (100% ± 15%). Intravenous infusion of EUK-134 (2.5 mg/kg at 30 minutes of recovery + 1.25 mg/kg/h until 4 hours of recovery) with normothermic recovery resulted in 40% ± 12% viable neurons in putamen. Treatment with saline vehicle followed by delayed hypothermia resulted in partial protection (46% ± 15%). Combining early EUK-134 treatment with delayed hypothermia also produced partial protection (47% ± 18%) that was not significantly greater than single treatment with EUK-134 (confidence interval of difference: -15% to 29%) or delayed hypothermia (-16% to 19%). Furthermore, no additive neuroprotection was detected in caudate nucleus or parasagittal neocortex, where neuronal loss was less severe. CONCLUSIONS: We conclude that early treatment with this antioxidant does not substantially enhance the therapeutic benefit of delayed hypothermia in protecting highly vulnerable neurons in HI-insulted newborns, possibly because basal ganglia neurons are already undergoing irreversible cell death signaling by the time EUK-134 is administered or because this compound and hypothermia attenuate similar mechanisms of injury.


Subject(s)
Antioxidants/therapeutic use , Hypothermia, Induced , Hypoxia-Ischemia, Brain/therapy , Neuroprotective Agents/therapeutic use , Organometallic Compounds/therapeutic use , Salicylates/therapeutic use , Animals , Animals, Newborn , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Male , Swine
4.
Anesth Analg ; 114(4): 825-36, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22314692

ABSTRACT

BACKGROUND: Cerebrovascular autoregulation after resuscitation has not been well studied in an experimental model of pediatric cardiac arrest. Furthermore, developing noninvasive methods of monitoring autoregulation using near-infrared spectroscopy (NIRS) would be clinically useful in guiding neuroprotective hemodynamic management after pediatric cardiac arrest. We tested the hypotheses that the lower limit of autoregulation (LLA) would shift to a higher arterial blood pressure between 1 and 2 days of recovery after cardiac arrest and that the LLA would be detected by NIRS-derived indices of autoregulation in a swine model of pediatric cardiac arrest. We also tested the hypothesis that autoregulation with hypertension would be impaired after cardiac arrest. METHODS: Data on LLA were obtained from neonatal piglets that had undergone hypoxic-asphyxic cardiac arrest and recovery for 1 day (n = 8) or 2 days (n = 8), or that had undergone sham surgery with 2 days of recovery (n = 8). Autoregulation with hypertension was examined in a separate cohort of piglets that underwent hypoxic-asphyxic cardiac arrest (n = 5) or sham surgery (n = 5) with 2 days of recovery. After the recovery period, piglets were reanesthetized, and autoregulation was monitored by standard laser-Doppler flowmetry and autoregulation indices derived from NIRS (the cerebral oximetry [COx] and hemoglobin volume [HVx] indices). The LLA was determined by decreasing blood pressure through inflation of a balloon catheter in the inferior vena cava. Autoregulation during hypertension was evaluated by inflation of an aortic balloon catheter. RESULTS: The LLAs were similar between sham-operated piglets and piglets that recovered for 1 or 2 days after arrest. The NIRS-derived indices accurately detected the LLA determined by laser-Doppler flowmetry. The area under the curve of the receiver operator characteristic curve for cerebral oximetry index was 0.91 at 1 day and 0.92 at 2 days after arrest. The area under the curve for hemoglobin volume index was 0.92 and 0.89 at the respective time points. During induced hypertension, the static rate of autoregulation, defined as the percentage change in cerebrovascular resistance divided by the percentage change in cerebral perfusion pressure, was not different between postarrest and sham-operated piglets. At 2 days recovery from arrest, piglets exhibited neurobehavioral deficits and histologic neuronal injury. CONCLUSIONS: In a swine model of pediatric hypoxic-asphyxic cardiac arrest with confirmed brain damage, the LLA did not differ 1 and 2 days after resuscitation. The NIRS-derived indices accurately detected the LLA in comparison with laser-Doppler flow measurements at those time points. Autoregulation remained functional during hypertension.


Subject(s)
Heart Arrest/physiopathology , Homeostasis , Monitoring, Physiologic , Animals , Disease Models, Animal , Hemoglobins/analysis , Hypertension/physiopathology , Hypotension, Controlled , Laser-Doppler Flowmetry , Male , Spectroscopy, Near-Infrared , Swine
5.
J Neurochem ; 121(1): 168-79, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22251169

ABSTRACT

20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons. Administration of HET0016 after H-I improved early neurological recovery and protected neurons in putamen after 4 days of recovery. HET0016 had no significant effect on cerebral blood flow. cytochrome P450 4A immunoreactivity was detected in putamen neurons, and direct infusion of 20-HETE in the putamen increased phosphorylation of Na(+), K(+) -ATPase and NMDA receptor NR1 subunit selectively at protein kinase C-sensitive sites but not at protein kinase A-sensitive sites. HET0016 selectively inhibited the H-I induced phosphorylation at these same sites at 3 h of recovery and improved Na(+), K(+) -ATPase activity. At 3 h, HET0016 also suppressed H-I induced extracellular signal-regulated kinase 1/2 activation and protein markers of nitrosative and oxidative stress. Thus, 20-HETE can exert direct effects on key proteins involved in neuronal excitotoxicity in vivo and contributes to neurodegeneration after global cerebral ischemia in immature brain.


Subject(s)
Amidines/administration & dosage , Brain Ischemia/metabolism , Brain Ischemia/prevention & control , Hydroxyeicosatetraenoic Acids/antagonists & inhibitors , Hydroxyeicosatetraenoic Acids/biosynthesis , Animals , Animals, Newborn , Hydroxyeicosatetraenoic Acids/administration & dosage , Infusions, Intraventricular , Male , Swine
6.
Dev Neurosci ; 33(3-4): 299-311, 2011.
Article in English | MEDLINE | ID: mdl-21701140

ABSTRACT

Striatal neurons are highly vulnerable to hypoxia-ischemia (HI) in term newborns. In a piglet model of HI, striatal neurons develop oxidative stress and organelle disruption by 3-6 h of recovery and ischemic cytopathology over 6-24 h of recovery. We tested the hypothesis that early treatment with the antioxidants EUK-134 (a manganese-salen derivative that acts as a scavenger of superoxide, hydrogen peroxide, nitric oxide or NO and peroxynitrite) or edaravone (MCI-186, a scavenger of hydroxyl radical and NO) protects striatal neurons from HI. Anesthetized newborn piglets were subjected to 40 min of hypoxia and 7 min of airway occlusion. At 30 min after resuscitation, the piglets received vehicle, EUK-134 or edaravone. Drug treatment did not affect arterial blood pressure, blood gases, blood glucose or rectal temperature. At 4 days of recovery, the density of viable neurons in the putamen of vehicle-treated piglets was 12 ± 6% (±SD) of sham-operated control density. Treatment with EUK-134 increased viability to 41 ± 17%, and treatment with edaravone increased viability to 39 ± 19%. In the caudate nucleus, neuronal viability was increased from 54 ± 11% in the vehicle group to 78 ± 15% in the EUK-134 group and to 73 ± 13% in the edaravone group. Antioxidant drug treatment accelerated recovery from neurologic deficits and decreased oxidative and nitrative damage to nucleic acids. Treatment with EUK-134 reduced the HI-induced formation of protein carbonyl groups and tyrosine nitration at 3 h of recovery. We conclude that systemic administration of antioxidant agents by 30 min after resuscitation from HI can reduce oxidative stress and salvage neurons in the highly vulnerable striatum in a large-animal model of neonatal HI. Therefore, oxidative stress is an important mechanism for this injury, and antioxidant therapy is a rational, mechanism-based approach to neuroprotection in the newborn brain.


Subject(s)
Antioxidants/pharmacology , Antipyrine/analogs & derivatives , Corpus Striatum/drug effects , Free Radical Scavengers/pharmacology , Hypoxia-Ischemia, Brain , Neuroprotective Agents/pharmacology , Organometallic Compounds/pharmacology , Salicylates/pharmacology , Animals , Animals, Newborn , Antioxidants/therapeutic use , Antipyrine/pharmacology , Antipyrine/therapeutic use , Corpus Striatum/pathology , Edaravone , Free Radical Scavengers/therapeutic use , Hypoxia-Ischemia, Brain/drug therapy , Hypoxia-Ischemia, Brain/pathology , Hypoxia-Ischemia, Brain/physiopathology , Nerve Degeneration/drug therapy , Nerve Degeneration/pathology , Nerve Degeneration/physiopathology , Neuroprotective Agents/therapeutic use , Organometallic Compounds/therapeutic use , Oxidative Stress/drug effects , Salicylates/therapeutic use , Swine
7.
Crit Care Med ; 39(10): 2337-45, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21705904

ABSTRACT

OBJECTIVE: Knowledge remains limited regarding cerebral blood flow autoregulation after cardiac arrest and during postresuscitation hypothermia. We determined the relationship of cerebral blood flow to cerebral perfusion pressure in a swine model of pediatric hypoxic-asphyxic cardiac arrest during normothermia and hypothermia and tested novel measures of autoregulation derived from near-infrared spectroscopy. DESIGN: Prospective, balanced animal study. SETTING: Basic physiology laboratory at an academic institution. SUBJECTS: Eighty-four neonatal swine. INTERVENTIONS: Piglets underwent hypoxic-asphyxic cardiac arrest or sham surgery and recovered for 2 hrs with normothermia followed by 4 hrs of either moderate hypothermia or normothermia. In half of the groups, blood pressure was slowly decreased through inflation of a balloon catheter in the inferior vena cava to identify the lower limit of cerebral autoregulation at 6 hrs postresuscitation. In the remaining groups, blood pressure was gradually increased by inflation of a balloon catheter in the aorta to determine the autoregulatory response to hypertension. Measures of autoregulation obtained from standard laser-Doppler flowmetry and indices derived from near-infrared spectroscopy were compared. MEASUREMENTS AND MAIN RESULTS: Laser-Doppler flux was lower in postarrest animals compared to sham-operated controls during the 2-hr normothermic period after resuscitation. During the subsequent 4-hr recovery, hypothermia decreased laser-Doppler flux in both the sham surgery and postarrest groups. Autoregulation was intact during hypertension in all groups. With arterial hypotension, postarrest, hypothermic piglets had a significant decrease in the perfusion pressure lower limit of autoregulation compared to postarrest, normothermic piglets. The near-infrared spectroscopy-derived measures of autoregulation accurately detected loss of autoregulation during hypotension. CONCLUSIONS: In a pediatric model of cardiac arrest and resuscitation, delayed induction of hypothermia decreased cerebral perfusion and decreased the lower limit of autoregulation. Metrics derived from noninvasive near-infrared spectroscopy accurately identified the lower limit of autoregulation during normothermia and hypothermia in piglets resuscitated from arrest.


Subject(s)
Cerebrovascular Circulation/physiology , Homeostasis/physiology , Hypothermia, Induced/methods , Myocardial Infarction/physiopathology , Myocardial Infarction/therapy , Animals , Animals, Newborn , Blood Pressure , Hemodynamics , Intracranial Pressure/physiology , Laser-Doppler Flowmetry , Male , Reperfusion Injury/physiopathology , Spectroscopy, Near-Infrared , Swine
8.
Neurobiol Dis ; 43(2): 446-54, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21558004

ABSTRACT

Na+,Ca2+-permeable acid-sensing ion channel 1a (ASIC1a) is involved in the pathophysiologic process of adult focal brain ischemia. However, little is known about its role in the pathogenesis of global cerebral ischemia or newborn hypoxia-ischemia (H-I). Here, using a newborn piglet model of asphyxia-induced cardiac arrest, we investigated the effect of ASIC1a-specific blocker psalmotoxin-1 on neuronal injury. During asphyxia and the first 30min of recovery, brain tissue pH fell below 7.0, the approximate activation pH of ASIC1a. Psalmotoxin-1 injection at 20min before hypoxia, but not at 20min of recovery, partially protected the striatonigral and striatopallidal neurons in putamen. Psalmotoxin-1 pretreatment largely attenuated the increased protein kinase A-dependent phosphorylation of DARPP-32 and N-methyl-d-aspartate (NMDA) receptor NR1 subunit and decreased nitrative and oxidative damage to proteins at 3h of recovery. Pretreatment with NMDA receptor antagonist MK-801 also provided partial neuroprotection in putamen, and combined pretreatment with psalmotoxin-1 and MK-801 yielded additive neuroprotection. These results indicate that ASIC1a activation contributes to neuronal death in newborn putamen after H-I through mechanisms that may involve protein kinase A-dependent phosphorylation of NMDA receptor and nitrative and oxidative stress.


Subject(s)
Brain Infarction/drug therapy , Corpus Striatum/drug effects , Hypoxia-Ischemia, Brain/drug therapy , Nerve Tissue Proteins/antagonists & inhibitors , Neuroprotective Agents/pharmacology , Spider Venoms/pharmacology , Acid Sensing Ion Channels , Animals , Animals, Newborn , Brain Infarction/metabolism , Corpus Striatum/growth & development , Disease Models, Animal , Humans , Hypoxia-Ischemia, Brain/metabolism , Infant, Newborn , Male , Nerve Tissue Proteins/physiology , Neuroprotective Agents/therapeutic use , Peptides , Sodium Channels/physiology , Spider Venoms/therapeutic use , Sus scrofa
9.
Exp Neurol ; 221(1): 166-74, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19883643

ABSTRACT

In adult stroke models, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), a sigma receptor agonist, attenuates activity of neuronal nitric oxide synthase (nNOS), blunts ischemia-induced nitric oxide production, and provides neuroprotection. Here, we tested the hypothesis that PPBP attenuates neuronal damage in a model of global hypoxia-ischemia (H-I) in newborn piglets. Piglets subjected to hypoxia followed by asphyxic cardiac arrest were treated with saline or two dosing regimens of PPBP after resuscitation. Sigma-1 receptors were found in striatal neurons. PPBP dose-dependently protected neurons in putamen at 4 days of recovery from H-I. Immunoblots of putamen extracts at 3 h of recovery showed that PPBP decreased H-I-induced recruitment of nNOS in the membrane fraction and reduced the association of nNOS with NMDA receptor NR2 subunit. The latter effect was associated with changes in the coupling of nNOS to postsynaptic density-95 (PSD-95), but not NR2-PSD-95 interactions. Moreover, PPBP suppressed NOS activity in the membrane fraction and reduced H-I-induced nitrative and oxidative damage to proteins and nucleic acids. These findings indicate that PPBP protects striatal neurons in a large animal model of neonatal H-I and that the protection is associated with decreased coupling of nNOS to PSD-95.


Subject(s)
Corpus Striatum/pathology , Dopamine Antagonists/pharmacology , Haloperidol/analogs & derivatives , Nerve Degeneration/pathology , Nerve Degeneration/prevention & control , Neurons/drug effects , Nitric Oxide Synthase Type I/metabolism , Analysis of Variance , Animals , Animals, Newborn , Brain Ischemia/complications , Corpus Striatum/metabolism , Disease Models, Animal , Disks Large Homolog 4 Protein , Dose-Response Relationship, Drug , Haloperidol/pharmacology , Haloperidol/therapeutic use , Immunoprecipitation/methods , Intracellular Signaling Peptides and Proteins , Male , Membrane Proteins/metabolism , Nerve Degeneration/etiology , Oxidative Stress/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, sigma/drug effects , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...