Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 117(49): 13051-8, 2013 Dec 12.
Article in English | MEDLINE | ID: mdl-24102452

ABSTRACT

We report observations of shock compressed, unreacted hydrogen peroxide at pressures up to the von Neumann pressure for a steady detonation wave, using ultrafast laser-driven shock wave methods. At higher laser drive energy we find evidence of exothermic chemical reactivity occurring in less than 100 ps after the arrival of the shock wave in the sample. The results are consistent with our MD simulations and analysis and suggest that reactivity in hydrogen peroxide is initiated on a sub-100 ps time scale under conditions found just subsequent to the lead shock in a steady detonation wave.

2.
J Phys Chem B ; 117(18): 5675-82, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23586650

ABSTRACT

We report the adiabatic sound speeds for supercritical fluid carbon monoxide along two isotherms, from 0.17 to 2.13 GPa at 297 K and from 0.31 to 3.2 GPa at 600 K. The carbon monoxide was confined in a resistively heated diamond-anvil cell, and the sound speed measurements were conducted in situ using a recently reported variant of the photoacoustic light scattering effect. The measured sound speeds were then used to parametrize a single site dipolar exponential-6 intermolecular potential for carbon monoxide. PρT thermodynamic states, sound speeds, and shock Hugoniots were calculated using the newly parametrized intermolecular potential and compared to previously reported experimental results. Additionally, we generated an analytical equation of state for carbon monoxide by fitting to a grid of calculated PρT states over a range of 0.1-10 GPa and 150-2000 K. A 2% mean variation was found between computed high-pressure solid-phase densities and measured data-a surprising result for a spherical interaction potential. We further computed a rotationally dependent fluid to ß-solid phase boundary; results signal the relative magnitude of short-range rotational disorder under conditions that span existing phase boundary measurements.


Subject(s)
Carbon Monoxide/chemistry , Temperature , Pressure
3.
J Phys Chem A ; 116(20): 4851-9, 2012 May 24.
Article in English | MEDLINE | ID: mdl-22554068

ABSTRACT

Shock compression studies of pressed and confined ultrafine 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) powder were conducted using ultrashort ~300 ps, ~50 GPa shock waves. The recovered decomposition products were characterized using X-ray photoelectron spectroscopy, infrared spectroscopy, and Raman spectroscopy. A substantial amount of shock-related chemistry was observed. Approximately 75% of the nitrogen atoms were liberated as gas-phase species, along with ~33% of the oxygen atoms, as a result of the applied shock. Furthermore, we observe C 1s binding energies suggesting the formation of sp(3) hybridized amorphous carbon. For comparison, a carbon nitride material was also prepared and characterized by thermally pyrolizing TATB. The shock-compressed TATB and the thermally pyrolized TATB are qualitatively different, suggesting that, carbon nitrides, a possible indicator of nitrogen-rich heterocycles precursors, are not a major product class for strongly overdriven shock conditions. These experimental conditions were, however, not detonation conditions, and the possible formation of nitrogen-rich heterocycles in actual detonations still exists.


Subject(s)
Lasers , Trinitrobenzenes/chemistry , Nitriles/chemistry , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Thermodynamics , X-Rays
4.
J Phys Chem A ; 113(44): 12105-14, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19863130

ABSTRACT

An ultrafast flash-thermal conductance technique is used to study energy transfer from a flash-heated polycrystalline Au(111) surface to adsorbed thiolate self-assembled monolayers (SAMs). The focus is on understanding energy transfer processes to parts of SAM molecules situated within a few carbon atoms of the Au surface, by probing specific SAM functional groups with vibrational sum-frequency generation (SFG) spectroscopy. The SFG intensity drop after flash-heating for benzenethiol (BT) CH-stretch transitions shows a substantial overshoot lasting several tens of picoseconds before BT and Au equilibrate at a higher temperature estimated at 600 degrees C. The thermal redshift of BT CH-stretch transitions also shows an overshoot. Other aromatic molecules and aliphatic molecules such as cyclohexanethiol (CHT) and hexanethiol (C6) have an overshoot as well. A model is proposed where the overshoot is primarily the result of hot surface electrons existing only during the flash-heating pulses. The intensity overshoot is caused by electron excitation of the probed vibrations and the redshift overshoot is caused by electron excitation of lower-energy vibrations anharmonically coupled to the probed vibration. Although electron excitation causes a substantial perturbation, up to 50% in some cases, of the SFG signal, the total amount of energy deposited into SAMs by electrons is much smaller than the heat transferred by Au surface phonons. Studies of a variety of molecular structures including substituted benzenes, biphenyl and terphenyl, and benzene rings connected to the Au surface by alkane linkers show that the likelihood of electron excitation becomes small for distances of 4-5 carbon atoms above the surface.


Subject(s)
Alkanes/chemistry , Benzene Derivatives/chemistry , Energy Transfer , Gold/chemistry , Hot Temperature , Sulfhydryl Compounds/chemistry , Adsorption , Carbon/chemistry , Electrons , Hydrogen/chemistry , Kinetics , Molecular Structure , Surface Properties , Thermodynamics , Vibration
5.
Acc Chem Res ; 42(9): 1343-51, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19388671

ABSTRACT

It is difficult to study molecules at surfaces or interfaces because the total number of molecules is small, and this is especially problematic in studies of interfacial molecular dynamics with high time resolution. Vibrational sum-frequency generation (SFG) spectroscopy, where infrared (IR) and visible pulses are combined at an interface, has emerged as a powerful method to probe interfacial molecular dynamics. The nonlinear coherent nature of SFG helps overcome the sensitivity issues, especially when femtosecond IR pulses are used. With femtosecond pulses, a range of vibrational transitions can be probed simultaneously and high time resolution can be achieved. Ultrafast SFG experiments use three pulses, a pump pulse to generate nonequilibrium conditions with a pair of probe pulses, and two time delay parameters. Mapping SFG intensity as a function of the two time delays creates a two-dimensional surface, where one axis (t(1)) provides information about molecular dynamics driven by the pump pulses, and the other axis (t(2)) about the dynamics of the SFG probing process. We present examples of ultrafast SFG measurements drawn from our studies of heat transport through interfacial molecules that are models for molecular wires in electronic circuits. In these flash-heating experiments, a self-assembled monolayer (SAM) of long-chain molecules adsorbed on a metal surface is subjected to a large amplitude (up to 800 K) temperature jump. Specific vibrational reporter groups on the SAM molecules probed by SFG serve as tiny ultrafast thermometers approximately 1.5 A thick with a approximately 1 ps response time. These SFG thermometers can monitor ultrafast heat transport through the SAM molecules. By varying the lengths of the molecular wires we can tell if the heat is propagating ballistically along the chains, at constant speed, or diffusively. In our analysis of 2D SFG methods, we first describe a simpler situation where the visible probe pulse is effectively infinite in duration. This is the usual way time-resolved SFG measurements are made, and the SFG experiment then becomes a function of a single time delay, the pump-IR probe delay t(1). Unfortunately, in this case the SFG signals have a large contribution from the nonresonant (NR) background generated by the metal surface, which adds a great deal of noise to the data, and the time resolution is limited by the molecule's vibrational dephasing time constant T(2), which is often 1 ps or more. We have recently shown that the NR background can be suppressed using a time delay t(2) between IR and visible probe pulses. In this now 2D SFG method, one would expect that information about the molecular response to the pump pulses would be contained in slices along the t(1) axis, but by simulating the experiment we show that the t(1) and t(2) parameters interact. Changing t(2) to suppress the NR background causes t(1) slices to shift in time. We also show how to improve the time resolution of ultrafast SFG experiments while maintaining NR suppression using femtosecond visible pulses at appropriate t(2) delay values.


Subject(s)
Spectrophotometry, Infrared/methods , Thermal Conductivity , Vibration , Nonlinear Dynamics , Time Factors
6.
J Phys Chem A ; 112(16): 3523-9, 2008 Apr 24.
Article in English | MEDLINE | ID: mdl-18345654

ABSTRACT

We have shown that it is possible to input heat to one location of a molecule and simultaneously measure its arrival in real time at two other locations, using an ultrafast flash-thermal conductance technique. A femtosecond laser pulse heats an Au layer to approximately 800 degrees C, while vibrational sum-frequency generation spectroscopy (SFG) monitors heat flow into self-assembled monolayers (SAMs) of organic thiolates. Heat flow into the SAM creates thermally induced disorder, which decreases the coherent SFG signal from the CH-stretching transitions. Recent improvements in the technique are described, including the use of nonresonant background-suppressed SFG. The improved apparatus was characterized using alkanethiolate and benzenethiolate SAMs. In the asymmetric 2-methyl benzenethiolate SAM, SFG can simultaneously monitor CH-stretching transitions of both phenyl and methyl groups. The phenyl response to flash-heating occurs at least as fast as the 1 ps time for the Au surface to heat. The methyl response has a faster portion similar to the phenyl response and a slower portion characterized by an 8 ps time constant. The faster portions are attributed to disordering of the methyl-substituted phenyl rings due to thermal excitation of the Au-S adbonds. The slower portion, seen only in the methyl SFG signal, is attributed to heat flow from the metal surface into the phenyl rings and then to the methyl groups.


Subject(s)
Energy Transfer , Vibration , Carbon/chemistry , Hot Temperature , Spectrum Analysis , Time Factors
7.
Science ; 317(5839): 787-90, 2007 Aug 10.
Article in English | MEDLINE | ID: mdl-17690290

ABSTRACT

At the level of individual molecules, familiar concepts of heat transport no longer apply. When large amounts of heat are transported through a molecule, a crucial process in molecular electronic devices, energy is carried by discrete molecular vibrational excitations. We studied heat transport through self-assembled monolayers of long-chain hydrocarbon molecules anchored to a gold substrate by ultrafast heating of the gold with a femtosecond laser pulse. When the heat reached the methyl groups at the chain ends, a nonlinear coherent vibrational spectroscopy technique detected the resulting thermally induced disorder. The flow of heat into the chains was limited by the interface conductance. The leading edge of the heat burst traveled ballistically along the chains at a velocity of 1 kilometer per second. The molecular conductance per chain was 50 picowatts per kelvin.

SELECTION OF CITATIONS
SEARCH DETAIL
...