Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(22): 9526-9539, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38768267

ABSTRACT

Molecular spin qubits have demonstrated immense potential in quantum information science research due to the addressability of electron spins using microwave frequencies, and the scalability and tunability of molecular systems. Exemplary in this regard is the holmium polyoxometalate, [Na9Ho(W5O18)2]·35H2O (HoW10), which features an accessible atomic clock transition at 9.4 GHz; however, the coherence time of this molecule is limited by spin-phonon coupling driven decoherence processes. To limit these decoherence pathways, materials need to be designed to reduce energy overlap between spin and phonon states, and this necessitates developing a better understanding on how structural modifications impact the vibrational landscape for classes of complexes. Herein we conducted a full investigation into the fundamental structural and vibrational properties of the lanthanide Lindqvist polyoxometalate series, [Na9Ln(W5O18)2]·xH2O (Ln = La(III)-Lu(III), except Pm(III)) (LnW10), to assess how structural changes effect vibrational characteristics and to elucidate pathways to improve the coherence properties of HoW10. Single crystal X-ray diffraction results revealed four distinct structural polymorphs in complexes 1-14 wherein first coordination spheres were identical, and differences manifested as changes in lattice packing. Interestingly, the subtle changes in packing exhibited by the four polymorphs were found to impact distortions away from ideal D4d symmetry for each of the LnW10 complexes. Raman and far-infrared (FIR) spectra of complexes 1-14 were collected to identify vibrational modes present in low energy regions and peak fitting assignments were made according to literature precedents. Qualitative and Partial least squares (PLS) analysis show correlations between complex structural parameters with the low energy Raman and FIR vibrational modes of interest. Overall, this investigation shows that the second coordination sphere plays an integral role in modulation of the structural and vibrational characteristics of LnW10 complexes, which makes it a viable route for tuning spin and vibrational manifolds of species within this series.

2.
Chemistry ; 29(45): e202300749, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37249248

ABSTRACT

Here we describe the synthesis and characterization of a new uranyl peroxide cluster (UPC), U60 Ox30 *, which captures and stabilizes oxygen-based free radicals for more than one week. These radical species were first detected with a nitroblue tetrazolium colorimetric assay and U60 Ox30 * was characterized by single crystal X-ray diffraction as well as infrared (IR), Raman, UV-Vis-NIR, and electron paramagnetic resonance (EPR) spectroscopies. Identification of the free radicals present in U60 Ox30 * was done via room temperature solid and solution state X-band EPR studies using spin trapping methods. The spin trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was definitive for identifying the free radicals in U60 Ox30 *, which are hydroxyl radicals (⋅OH) that are stable for up to ten days that also persist upon addition of the metalloenzymes catalase and superoxide dismutase. Addition of the spin trapping agent α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN) further confirmed the radicals were oxygen based, and deuteration experiments showed that the origin of the free radicals was from the decomposition of H2 O2 in water. These results demonstrate that highly oxidizing species such as the ⋅OH radical can be stabilized in UPCs, which alters our understanding of the role of free radicals present in spent nuclear fuel.

3.
Nucl Med Biol ; 110-111: 28-36, 2022.
Article in English | MEDLINE | ID: mdl-35512517

ABSTRACT

INTRODUCTION: The in vivo generator 134Ce/134La has the potential to serve as a PET imaging surrogate for both alpha-emitting 225Ac and 227Th radionuclides due to the unique CeIII/CeIV redox couple and the relatively long half-life of 134Ce. The purpose of this study was to demonstrate the compatibility of 134Ce with DOTA-based antibody drug conjugates, which would act as therapeutic agents when incorporating 225Ac. METHODS: The in vivo biodistributions of [134Ce]Ce-DOTA and [134Ce]Ce-citrate were assayed by microPET imaging over 25 h in Swiss Webster mice to determine the in vivo stability of the [134Ce]Ce-DOTA complex. L3-edge X-ray absorption spectroscopy measurements were used to confirm the Ce oxidation state and the formation of a fully coordinated Ce-DOTA complex. The in vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab was assayed over 147 h by microPET imaging in SK-OV-3 tumor-bearing NOD SCID mice to evaluate tumor uptake and in vivo stability. Mice were euthanized at 214 h after administration of the radiolabeled antibody conjugate, and imaged 1 h later. An ex vivo biodistribution experiment was then performed in order to corroborate the PET images. RESULTS: [134Ce]Ce-DOTA displayed rapid renal elimination and high in vivo stability over 25 h, with negligible bone and liver uptake, in comparison to [134Ce]Ce-citrate. L3-edge X-ray absorption spectroscopy experiments confirmed the 3+ oxidation state within the stable Ce-DOTA complex. MicroPET images of [134Ce]Ce-DOTA-Trastuzumab displayed elevated tumor uptake over 214 h, with minimal bone and liver uptake analogous to previously reported [225Ac]Ac-DOTA-Trastuzumab biodistribution results, and the ex vivo biodistribution of [134Ce]Ce-DOTA-Trastuzumab corroborated the final PET images. CONCLUSION: These results demonstrate that 134Ce allows for long-term tumor targeting with DOTA-based antibody drug conjugates and may therefore be used to trace antibody drug conjugates incorporating 225Ac.


Subject(s)
Immunoconjugates , Animals , Cell Line, Tumor , Citrates , Mice , Mice, SCID , Positron-Emission Tomography , Tissue Distribution , Trastuzumab
4.
J Synchrotron Radiat ; 29(Pt 2): 315-322, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254293

ABSTRACT

The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Šfor Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.


Subject(s)
Coordination Complexes , Plutonium , Berkelium , Chelating Agents/chemistry , Plutonium/chemistry
5.
Methods Enzymol ; 651: 139-155, 2021.
Article in English | MEDLINE | ID: mdl-33888202

ABSTRACT

Single crystal X-ray diffraction is a technique that measures interatomic distances with atomic resolution. Utilizing this technique for metal complexes featuring lanthanide and actinide elements is complicated by the scarcity and radioactivity of many of the metals of the f-block, as sub-milligram samples are difficult to crystallize for small molecule X-ray diffraction experiments. In this chapter, we present a protocol developed in our group that circumvents these challenges by exploiting macromolecular crystallography, wherein a protein with a large and well-characterized binding calyx is used as a scaffold to crystallize small-molecule metal complexes. Highlighting several examples, we identify the structural and chemical information that can be acquired by this method, and delineate the benefits of directing crystal growth with proteins, such as decreasing the amount of metal used to the sub-microgram scale. Moreover, since protein recognition depends on the nature of the metal-chelator bonds, subtle effects in the lanthanide and actinide coordination chemistry, such as metal-ligand covalency, can be qualitatively assessed.


Subject(s)
Lanthanoid Series Elements , Crystallography, X-Ray , Ligands , Macromolecular Substances , X-Ray Diffraction
6.
Chempluschem ; 86(3): 483-491, 2021 03.
Article in English | MEDLINE | ID: mdl-33733616

ABSTRACT

An ideal chelator for f-elements features rapid kinetics of complexation, high thermodynamic stability, and slow kinetics of dissociation. Here we present the facile synthesis of a macrocyclic ligand bearing four 1-hydroxy-2-pyridinone units linked to a cyclen scaffold that rapidly forms thermodynamically stable complexes with lanthanides (Sm3+ , Eu3+ , Tb3+ , Dy3+ ) and a representative late actinide (Cm3+ ) in aqueous media and concurrently sensitizes them. Extended X-ray absorption fine structure (EXAFS) spectroscopy revealed an increase in the Ln/An-O bond lengths following the trend Cm>Eu>Tb and EXAFS data were compatible with time-resolved luminescence studies, which indicated one to two water molecules in the inner metal coordination sphere of Eu(III) and two water molecules for the Cm(III) complex. Spectrofluorimetric ligand competition titrations against DTPA confirmed the high thermodynamic stability of DOTHOPO complexes, with pM values between 19.9(1) and 21.9(2).

7.
Nature ; 590(7844): 85-88, 2021 02.
Article in English | MEDLINE | ID: mdl-33536647

ABSTRACT

The transplutonium elements (atomic numbers 95-103) are a group of metals that lie at the edge of the periodic table. As a result, the patterns and trends used to predict and control the physics and chemistry for transition metals, main-group elements and lanthanides are less applicable to transplutonium elements. Furthermore, understanding the properties of these heavy elements has been restricted by their scarcity and radioactivity. This is especially true for einsteinium (Es), the heaviest element on the periodic table that can currently be generated in quantities sufficient to enable classical macroscale studies1. Here we characterize a coordination complex of einsteinium, using less than 200 nanograms of 254Es (with half-life of 275.7(5) days), with an organic hydroxypyridinone-based chelating ligand. X-ray absorption spectroscopic and structural studies are used to determine the energy of the L3-edge and a bond distance of einsteinium. Photophysical measurements show antenna sensitization of EsIII luminescence; they also reveal a hypsochromic shift on metal complexation, which had not previously been observed in lower-atomic-number actinide elements. These findings are indicative of an intermediate spin-orbit coupling scheme in which j-j coupling (whereby single-electron orbital angular momentum and spin are first coupled to form a total angular momentum, j) prevails over Russell-Saunders coupling. Together with previous actinide complexation studies2, our results highlight the need to continue studying the unusual behaviour of the actinide elements, especially those that are scarce and short-lived.

8.
Inorg Chem ; 60(2): 973-981, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33356197

ABSTRACT

The solution-state interactions between octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) chelating ligands and uranium were investigated and characterized by UV-visible spectrophotometry and X-ray absorption spectroscopy (XAS), as well as electrochemically via spectroelectrochemistry (SEC) and cyclic voltammetry (CV) measurements. Depending on the selected chelator, we demonstrate the controlled ability to bind and stabilize UIV, generating with 3,4,3-LI(1,2-HOPO), a tetravalent uranium complex that is practically inert toward oxidation or hydrolysis in acidic, aqueous solution. At physiological pH values, we are also able to bind and stabilize UIV to a lesser extent, as evidenced by the mix of UIV and UVI complexes observed via XAS. CV and SEC measurements confirmed that the UIV complex formed with 3,4,3-LI(1,2-HOPO) is redox inert in acidic media, and UVI ions can be reduced, likely proceeding via a two-electron reduction process.

9.
Inorg Chem ; 59(3): 2030-2036, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31971379

ABSTRACT

The octadentate hydroxypyridinone chelator 3,4,3-LI(1,2-HOPO) is a promising therapeutic agent because of its high affinity for f-block elements and noncytotoxicity at medical dosages. The interaction between 3,4,3-LI(1,2-HOPO) and other biomedically relevant metals such as gold, however, has not been explored. Gold nanoparticles functionalized with chelators have demonstrated great potential in theranostics, yet thus far, no protocol that combines 3,4,3-LI(1,2-HOPO) and colloidal gold has been developed. Here, we characterize the solution thermodynamic properties of the complexes formed between 3,4,3-LI(1,2-HOPO) and Au3+ ions and demonstrate how under specific pH conditions the chelator promotes the growth of gold nanoparticles, acting as both reducing and stabilizing agent. 3,4,3-LI(1,2-HOPO) ligands on the nanoparticle surface remain active and selective toward f-block elements, as evidenced by gold nanoparticle selective aggregation. Finally, a new colorimetric assay capable of reaching the detection levels necessary for the quantification of lanthanides in waste from industrial processes is developed based on the inhibition of particle growth by lanthanides.

10.
Chemistry ; 26(11): 2354-2359, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31914232

ABSTRACT

Octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) siderophore analogues are known to be efficacious chelators of the actinide cations, and these ligands are also capable of facilitating both activation and reduction of actinyl species. Utilizing X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies, as well as cyclic voltammetry measurements, herein, we elucidate chelation-based mechanisms for driving reactivity and initiating redox processes in a family of neptunyl-HOPO and CAM complexes. Based on the selected chelator, the ability to control the oxidation state of neptunium and the speed of reduction and concurrent oxo group activation was demonstrated. Most notably, reduction kinetics for the NpV O2 +/ /NpIV redox couple upon chelation by the ligands 3,4,3-LI(1,2-HOPO) and 3,4,3-LI(CAM)2 (1,2-HOPO)2 was observed to be faster than ever reported, and in fact quicker than we could measure using either X-ray absorption spectroscopy or electrochemical techniques.

11.
12.
Commun Chem ; 3(1): 61, 2020 May 15.
Article in English | MEDLINE | ID: mdl-36703424

ABSTRACT

The octadentate siderophore analog 3,4,3-LI(1,2-HOPO), denoted 343-HOPO hereafter, is known to have high affinity for both trivalent and tetravalent lanthanide and actinide cations. Here we extend its coordination chemistry to the rare-earth cations Sc3+ and Y3+ and characterize fundamental metal-chelator binding interactions in solution via UV-Vis spectrophotometry, nuclear magnetic resonance spectroscopy, and spectrofluorimetric metal-competition titrations, as well as in the solid-state via single crystal X-ray diffraction. Sc3+ and Y3+ binding with 343-HOPO is found to be robust, with both high thermodynamic stability and fast room temperature radiolabeling, indicating that 343-HOPO is likely a promising chelator for in vivo applications with both metals. As a proof of concept, we prepared a 86Y-343-HOPO complex for in vivo PET imaging, and the results presented herein highlight the potential of 343-HOPO chelated trivalent metal cations for therapeutic and theranostic applications.

13.
Chemistry ; 26(61): 13819-13825, 2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33463816

ABSTRACT

A new uranyl containing metal-organic framework, RPL-1: [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL-1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Šand is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.

14.
Chem Sci ; 10(28): 6834-6843, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31391906

ABSTRACT

Current methods for metal chelation are generally based on multidentate organic ligands, which are generated through cumbersome multistep synthetic processes that lack flexibility for systematically varying metal-binding motifs. Octadentate ligands incorporating hydroxypyridinone or catecholamide binding moieties onto a spermine scaffold are known to display some of the highest affinities towards f-elements. Enhancing binding affinity for specific lanthanide or actinide ions however, necessitates ligand architectures that allow for modular and high throughput synthesis. Here we introduce a high-throughput combinatorial library of 16 tetrameric N-substituted glycine oligomers (peptoids) containing hydroxypyridinone or catecholamide chelating units linked via an ethylenediamine bridge and, for comparison, we also synthesized the corresponding mixed ligands derived from the spermine scaffold: 3,4,3-LI(1,2-HOPO)2(CAM)2 and 3,4,3-LI(CAM)2(1,2-HOPO)2. Coordination-based luminescence studies were carried out with Eu3+ and Tb3+ to begin probing the properties of the new ligand architecture and revealed higher sensitization efficiency with the spermine scaffold as well as different spectroscopic features among the structural peptoid isomers. Solution thermodynamic properties of selected ligands revealed different coordination properties between the spermine and peptoid analogues with Eu3+ stability constants log ß 110 ranging from 28.88 ± 3.45 to 43.97 ± 0.49. The general synthetic strategy presented here paves the way for precision design of new specific and versatile ligands, with a variety of applications tailored towards the use of f-elements, including separations, optical device optimization, and pharmaceutical development.

15.
Chemistry ; 25(29): 7114-7118, 2019 May 23.
Article in English | MEDLINE | ID: mdl-30970154

ABSTRACT

A new thorium metal-organic framework (MOF), Th(OBA)2 , where OBA is 4,4'-oxybis(benzoic) acid, has been synthesized hydrothermally in the presence of a range of nitrogen-donor coordination modulators. This Th-MOF, described herein as GWMOF-13, has been characterized by single-crystal and powder X-ray diffraction, as well as through a range of techniques including gas sorption, thermogravimetric analysis (TGA), solid-state UV/Vis and luminescence spectroscopy. Single-crystal X-ray diffraction analysis of GWMOF-13 reveals an interesting, high symmetry (cubic Ia 3 ‾ d) structure, which yields a novel srs-a topology. Most notably, TGA analysis of GWMOF-13 reveals framework stability to 525 °C, matching the thermal stability benchmarks of the UiO-66 series MOFs and zeolitic imidazolate frameworks (ZIFs), and setting a new standard for thermal stability in f-block based MOFs.

16.
Inorg Chem ; 57(22): 14337-14346, 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30372069

ABSTRACT

The solution chemistry of a chelator developed for 227Th targeted alpha therapy was probed. The compound of interest is an octadentate ligand comprising four N-methyl-3-hydroxy-pyridine-2-one metal-binding units, two tertiary amine groups, and one carboxylate arm appended for bioconjugation. The seven p Ka values of the ligand and the stability constants of complexes formed with Th(IV), Hf(IV), Zr(IV), Gd(III), Eu(III), Al(III), and Fe(III) were determined. The ligand exhibits extreme thermodynamic selectivity toward tetravalent metal ions with a ca. 20 orders of magnitude difference between the formation constant of the Th(IV) species formed at physiological pH, namely [ThL]-, and that of its Eu(III) analogue. Likewise, log ß110 values of 41.7 ± 0.3 and 26.9 ± 0.3 (T = 25 °C) were measured for [ThL]- and [FeIIIL]2-, respectively, highlighting the high affinity and selectivity of the ligand for Th ions over potentially competing endogenous metals. Single crystal X-ray analysis of the Fe(III) complex revealed a dinuclear 2:2 metal:chelator complex crystallizing in the space group P1̅. The formation of this dimeric species is likely favored by several intramolecular hydrogen bonds and the protonation state of the chelator in acidic media. LIII edge EXAFS data on the Th(IV) complexes of both the ligand and a monoclonal antibody conjugate revealed the expected mononuclear 1:1 metal:chelator coordination environment. This was also confirmed by high resolution mass spectrometry. Finally, kinetic experiments demonstrated that labeling the bioconjugated ligand with Th(IV) could be achieved and completed after 1 h at room temperature, reinforcing the high suitability of this chelator for 227Th targeted alpha therapy.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Pyridones/chemistry , Radiopharmaceuticals/chemistry , Thorium/chemistry , Antibodies, Monoclonal, Humanized/chemistry , Kinetics , Ligands , Molecular Structure , Thermodynamics , X-Ray Absorption Spectroscopy
17.
Chem Commun (Camb) ; 54(76): 10698-10701, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30187044

ABSTRACT

Oxo group activation with reduction of neptunyl(vi) and plutonyl(vi) to tetravalent hydroxo species by the hydroxypyridinone siderophore derivative 3,4,3-LI-(1,2-HOPO) was investigated in the gas-phase via electrospray ionization mass spectrometry, in solution via Raman spectroscopy, and computationally via density functional theory. Dissociation of the gas-phase tetravalent complexes resulted in actinide-hydroxo bond cleavage.

18.
Chemistry ; 24(49): 12747-12756, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29758104

ABSTRACT

Hybrid materials bearing elements from the 5f block display a rich diversity of coordination geometries, connectivities, and assembly motifs. Exemplary in this regard have been uranyl coordination polymers, which feature a wide range of secondary building units resulting from hydrolysis and oligomerization of the [UO2 ]2+ cation. An alternative approach to novel materials, however, suppresses hydrolysis and relies on non-covalent interactions (e.g. hydrogen or halogen bonding) to direct assembly of a more limited suite of species or building units. This may be achieved through the use of high-anion media to promote singular actinyl anions that are assembled with organic cations, or by way of functionalized chelating ligands that produce complexes suited for assembly through peripheral donor/acceptor sites. Presented in this Concept article is therefore an overview of our efforts in this arena. We highlight examples of each approach, share our thoughts regarding delineation of assembly criteria, and discuss the opportunities for exploring structure-property relationships in these systems.

19.
Inorg Chem ; 57(5): 2714-2723, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29436823

ABSTRACT

Bending the linear uranyl (UO22+) cation represents both a significant challenge and opportunity within the field of actinide hybrid materials. As part of related efforts to engage the nominally terminal oxo atoms of uranyl cation in noncovalent interactions, we synthesized a new uranyl complex, [UO2(C12H8N2)2(C7H2Cl3O2)2]·2H2O (complex 2), that featured both deviations from equatorial planarity and uranyl linearity from simple hydrothermal conditions. Based on this complex, we developed an approach to probe the nature and origin of uranyl bending within a family of hybrid materials, which was done via the synthesis of complexes 1-3 that display significant deviations from equatorial planarity and uranyl linearity (O-U-O bond angles between 162° and 164°) featuring 2,4,6-trihalobenzoic acid ligands (where Hal = F, Cl, and Br) and 1,10-phenanthroline, along with nine additional "nonbent" hybrid materials that either coformed with the "bent" complexes (4-6) or were prepared as part of complementary efforts to understand the mechanism(s) of uranyl bending (7-12). Complexes were characterized via single crystal X-ray diffraction and Raman, infrared (IR), and luminescence spectroscopy, as well as via quantum chemical calculations and density-based quantum theory of atoms in molecules (QTAIM) analysis. Looking comprehensively, these results are compared with the small library of bent uranyl complexes in the literature, and herein we computationally demonstrate the origin of uranyl bending and delineate the energetics behind this process.

20.
Inorg Chem ; 56(15): 9156-9168, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28742345

ABSTRACT

The syntheses and crystal structures of six new heterometallic compounds containing the UO22+ cation, o-, m-, and p-iodobenzoic acid ligands, and Tl+, Rb+, and Cs+ cations which adopt the role of both charge balancing cation and secondary metal center are described, as are the luminescent properties for Tl+ containing compounds 1, 4, and 6. The structures of compounds 1-3 are isomorphous and contain uranyl monomers bound by o-iodobenzoic acid ligands with Tl+, Rb+, and Cs+ cations acting as secondary metal centers. Compounds 4 and 5 are also isomorphous and feature m-iodobenzoic acid ligands bound to the uranyl cation along with Tl+ and Rb+ cations. Compound 6 is unique in this series as it is assembled from a dimeric uranyl unit and features p-iodobenzoic acid ligands and Tl+ cations which function as charge balancing secondary metal centers. Single crystal X-ray diffraction analysis of these materials suggests that the secondary metal cations are incorporated based on the size of their ionic radius (Tl+ < Rb+ < Cs+), which is directly related to the size of the "pocket" observed in 1-6. Further, Voronoi-Dirichlet tessellation and Hirshfeld surface analysis were used to probe the coordination environment of the secondary metal centers as part of ongoing efforts to develop metrics for determining the coordination number of secondary metal cations in similar systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...