Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 21(9): 2950-2963, 2021 09.
Article in English | MEDLINE | ID: mdl-33428803

ABSTRACT

Transplantation of islets in type 1 diabetes (T1D) is limited by poor islet engraftment into the liver, with two to three donor pancreases required per recipient. We aimed to condition the liver to enhance islet engraftment to improve long-term graft function. Diabetic mice received a non-curative islet transplant (n = 400 islets) via the hepatic portal vein (HPV) with fibroblast growth factor 7-loaded galactosylated poly(DL-lactide-co-glycolic acid) (FGF7-GAL-PLGA) particles; 26-µm diameter particles specifically targeted the liver, promoting hepatocyte proliferation in short-term experiments: in mice receiving 0.1-mg FGF7-GAL-PLGA particles (60-ng FGF7) vs vehicle, cell proliferation was induced specifically in the liver with greater efficacy and specificity than subcutaneous FGF7 (1.25 mg/kg ×2 doses; ~75-µg FGF7). Numbers of engrafted islets and vascularization were greater in liver sections of mice receiving islets and FGF7-GAL-PLGA particles vs mice receiving islets alone, 72 h posttransplant. More mice (six of eight) that received islets and FGF7-GAL-PLGA particles normalized blood glucose concentrations by 30-days posttransplant, versus zero of eight mice receiving islets alone with no evidence of increased proliferation of cells within the liver at this stage and normal liver function tests. This work shows that liver-targeted FGF7-GAL-PLGA particles achieve selective FGF7 delivery to the liver-promoting islet engraftment to help normalize blood glucose levels with a good safety profile.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Blood Glucose , Fibroblast Growth Factor 7 , Graft Survival , Mice
2.
Part Fibre Toxicol ; 11: 12, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24568236

ABSTRACT

BACKGROUND: Clinical studies have now confirmed the link between short-term exposure to elevated levels of air pollution and increased cardiovascular mortality, but the mechanisms are complex and not completely elucidated. The present study was designed to investigate the hypothesis that activation of pulmonary sensory receptors and the sympathetic nervous system underlies the influence of pulmonary exposure to diesel exhaust particulate on blood pressure, and on the myocardial response to ischemia and reperfusion. METHODS & RESULTS: 6 h after intratracheal instillation of diesel exhaust particulate (0.5 mg), myocardial ischemia and reperfusion was performed in anesthetised rats. Blood pressure, duration of ventricular arrhythmia, arrhythmia-associated death, tissue edema and reperfusion injury were all increased by diesel exhaust particulate exposure. Reperfusion injury was also increased in buffer perfused hearts isolated from rats instilled in vivo, excluding an effect dependent on continuous neurohumoral activation or systemic inflammatory mediators. Myocardial oxidant radical production, tissue apoptosis and necrosis were increased prior to ischemia, in the absence of recruited inflammatory cells. Intratracheal application of an antagonist of the vanilloid receptor TRPV1 (AMG 9810, 30 mg/kg) prevented enhancement of systolic blood pressure and arrhythmia in vivo, as well as basal and reperfusion-induced myocardial injury ex vivo. Systemic ß1 adrenoreceptor antagonism with metoprolol (10 mg/kg) also blocked enhancement of myocardial oxidative stress and reperfusion injury. CONCLUSIONS: Pulmonary diesel exhaust particulate increases blood pressure and has a profound adverse effect on the myocardium, resulting in tissue damage, but also increases vulnerability to ischemia-associated arrhythmia and reperfusion injury. These effects are mediated through activation of pulmonary TRPV1, the sympathetic nervous system and locally generated oxidative stress.


Subject(s)
Air Pollutants/toxicity , Myocardial Reperfusion Injury/pathology , Particulate Matter/toxicity , Receptors, Adrenergic, beta-1/drug effects , TRPV Cation Channels/drug effects , Vehicle Emissions/toxicity , Animals , Arrhythmias, Cardiac/chemically induced , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Hemodynamics/drug effects , Injections, Spinal , Male , Myocardial Reperfusion Injury/mortality , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Neutrophil Infiltration/drug effects , Rats , Rats, Wistar , Sensory Receptor Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...