Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 101(21): 218702, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19113460

ABSTRACT

Random Boolean networks are models of disordered causal systems that can occur in cells and the biosphere. These are open thermodynamic systems exhibiting a flow of energy that is dissipated at a finite rate. Life does work to acquire more energy, then uses the available energy it has gained to perform more work. It is plausible that natural selection has optimized many biological systems for power efficiency: useful power generated per unit fuel. In this Letter, we begin to investigate these questions for random Boolean networks using Landauer's erasure principle, which defines a minimum entropy cost for bit erasure. We show that critical Boolean networks maximize available power efficiency, which requires that the system have a finite displacement from equilibrium. Our initial results may extend to more realistic models for cells and ecosystems.


Subject(s)
Models, Statistical , Models, Theoretical , Software , Stochastic Processes
2.
Dalton Trans ; (17): 2072-80, 2006 May 07.
Article in English | MEDLINE | ID: mdl-16625251

ABSTRACT

The synthesis, characterisation and thermal and photochemical reactivity of Ru(CO)2(PPh3)(dppe) 1 towards hydrogen are described. Compound proved to exist in both fac (major) and mer forms in solution. Under thermal conditions, PPh3 is lost from 1 in the major reaction pathway and the known complex Ru(CO)2(dppe)(H)2 2 is formed. Photochemically, CO loss is the dominant process, leading to the alternative dihydride Ru(CO)(PPh3)(dppe)(H)2 3. The major isomer of 3, viz. 3a, contains hydride ligands that are trans to CO and trans to one of the phosphorus atoms of the dppe ligand but a second isomer, 3b, where both hydride ligands are trans to distinct phosphines, is also formed. On the NMR timescale, no interconversion of 3a and 3b was observed, although hydride site interchange is evident with activation parameters of DeltaH(double dagger) = 95 +/- 6 kJ mol(-1) and DeltaS(double dagger) = 26 +/- 17 J K(-1) mol(-1). Density functional theory confirms that the observed species are the most stable isomeric forms, and suggests that hydride exchange occurs via a transition state featuring an eta2-coordinated H2 unit.

3.
Phys Rev Lett ; 94(4): 040502, 2005 Feb 04.
Article in English | MEDLINE | ID: mdl-15783539

ABSTRACT

In this Letter we give a method for constructing sets of simple circuits that can determine the spectrum of a partially transposed density matrix, without requiring either a tomographically complete positive-operator-valued measurement or the addition of noise to make the spectrum non-negative. These circuits depend only on the dimension of the Hilbert space and are otherwise independent of the state.

4.
Dalton Trans ; (21): 3616-28, 2004 Nov 07.
Article in English | MEDLINE | ID: mdl-15510285

ABSTRACT

The photochemical reaction of Ru(CO)(3)(L)(2), where L = PPh(3), PMe(3), PCy(3) and P(p-tolyl)(3) with parahydrogen (p-H(2)) has been studied by in-situ NMR spectroscopy and shown to result in two competing processes. The first of these involves loss of CO and results in the formation of the cis-cis-trans-L isomer of Ru(CO)(2)(L)(2)(H)(2), while in the second, a single photon induces loss of both CO and L and leads to the formation of cis-cis-cis Ru(CO)(2)(L)(2)(H)(2) and Ru(CO)(2)(L)(solvent)(H)(2) where solvent = toluene, THF and pyridine (py). In the case of L = PPh(3), cis-cis-trans-L Ru(CO)(2)(L)(2)(H)(2) is shown to be an effective hydrogenation catalyst with rate limiting phosphine dissociation proceeding at a rate of 2.2 s(-1) in pyridine at 355 K. Theoretical calculations and experimental observations show that H(2) addition to the Ru(CO)(2)(L)(2) proceeds to form cis-cis-trans-L Ru(CO)(2)(L)(2)(H)(2) as the major product via addition over the pi-accepting OC-Ru-CO axis.

5.
Phys Rev Lett ; 91(13): 130602, 2003 Sep 26.
Article in English | MEDLINE | ID: mdl-14525294

ABSTRACT

We look at two possible routes to classical behavior for the discrete quantum random walk on the integers: decoherence in the quantum "coin" which drives the walk, or the use of higher-dimensional (or multiple) coins to dilute the effects of interference. We use the position variance as an indicator of classical behavior and find analytical expressions for this in the long-time limit; we see that the multicoin walk retains the "quantum" quadratic growth of the variance except in the limit of a new coin for every step, while the walk with decoherence exhibits "classical" linear growth of the variance even for weak decoherence.

SELECTION OF CITATIONS
SEARCH DETAIL
...