Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 54: 116557, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34922306

ABSTRACT

Phosphatidyl inositol (4,5)-bisphosphate (PI(4,5)P2) plays several key roles in human biology and the lipid kinase that produces PI(4,5)P2, PIP5K, has been hypothesized to provide a potential therapeutic target of interest in the treatment of cancers. To better understand and explore the role of PIP5K in human cancers there remains an urgent need for potent and specific PIP5K inhibitor molecules. Following a high throughput screen of the AstraZeneca collection, a novel, moderately potent and selective inhibitor of PIP5K, 1, was discovered. Detailed exploration of the SAR for this novel scaffold resulted in the considerable optimization of both potency for PIP5K, and selectivity over the closely related kinase PI3Kα, as well as identifying several opportunities for the continued optimization of drug-like properties. As a result, several high quality in vitro tool compounds were identified (8, 20 and 25) that demonstrate the desired biochemical and cellular profiles required to aid better understanding of this complex area of biology.


Subject(s)
Amides/pharmacology , Enzyme Inhibitors/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Amides/chemistry , Amides/metabolism , Animals , Caco-2 Cells , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Humans , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Rats , Structure-Activity Relationship
2.
J Med Chem ; 60(19): 7984-7999, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28892629

ABSTRACT

Inhibition of lysine specific demethylase 1 (LSD1) has been shown to induce the differentiation of leukemia stem cells in acute myeloid leukemia (AML). Irreversible inhibitors developed from the nonspecific inhibitor tranylcypromine have entered clinical trials; however, the development of effective reversible inhibitors has proved more challenging. Herein, we describe our efforts to identify reversible inhibitors of LSD1 from a high throughput screen and subsequent in silico modeling approaches. From a single hit (12) validated by biochemical and biophysical assays, we describe our efforts to develop acyclic scaffold-hops from GSK-690 (1). A further scaffold modification to a (4-cyanophenyl)glycinamide (e.g., 29a) led to the development of compound 32, with a Kd value of 32 nM and an EC50 value of 0.67 µM in a surrogate cellular biomarker assay. Moreover, this derivative does not display the same level of hERG liability as observed with 1 and represents a promising lead for further development.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Glycine/analogs & derivatives , Histone Demethylases/antagonists & inhibitors , Leukemia/drug therapy , Spiro Compounds/pharmacology , Biomarkers , Cell Line, Tumor , Computer Simulation , Drug Design , Drug Discovery , Ether-A-Go-Go Potassium Channels/drug effects , Glycine/chemical synthesis , Glycine/pharmacology , High-Throughput Screening Assays , Humans , Models, Molecular , Molecular Docking Simulation , Spiro Compounds/chemical synthesis , Structure-Activity Relationship , Tranylcypromine/analogs & derivatives , Tranylcypromine/chemistry , Tranylcypromine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...