Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 225: 122047, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33592769

ABSTRACT

Analysis of human insulin and its synthetic analogues is increasingly requested for clinical monitoring, for anti-doping purposes, but also for forensic cases. Indeed, insulin analogues may be abused for suicide or homicide - whence their forensic interest. Collection and storage conditions, as well as the phenomenon of degradation make post-mortem serum samples analytically challenging and consequently, the rate of exogenous insulin administration as cause of death is undoubtedly underestimated. However, with recent technological advances and the development of new extraction techniques particularly for anti-doping analyses, detection of insulins in post-mortem samples seems to be achievable. This study describes the first validated quantitative method for analysis human insulin and its six analogues (lispro, aspart, glulisine, glargine, detemir and degludec) in plasma and post-mortem sera. Various extraction processes, namely precipitation + solid phase extraction (SPE), filtration + SPE, precipitation + SPE + immunopurification, and filtration + immunopurification, were assessed to evaluate the lowest limit of detection for all target analogues. The selected sample preparation consists of filtration step followed by immunopurification extraction with an anti-body precoated ELISA plate for plasma. For post-mortem sera, the first step of precipitation was added to remove matrix interferences. The extracts were analyzed by ultra-high-performance liquid chromatography-high resolution mass spectrometry (LC-HRMS), interfaced by electrospray (ESI). The method was validated with respect linearity, precision, accuracy, recovery, matrix effect, dilution and carryover. The limit of quantification (LOQ) in plasma was 0.5 ng/mL for human insulin and rapid-acting insulins, 1.0 ng/mL for glargine, 2.5 ng/mL for degludec and 10 ng/mL for detemir. Two types of post-mortem sera were studied based on the post-mortem interval (PMI): inferior or superior to 48 h. The obtained LOQ were the same for each analogue, independent from the PMI: 1.0 ng/mL for human insulin and rapid-acting insulins, 1.0 ng/mL for glargine, 2.5 ng/mL for degludec and 10 ng/mL for detemir. At the LOQ level, for all insulins and all samples, accuracy was between 70 and 130% and precision inferior to 30%. The validated method was applied to five subjects participating in therapeutic monitoring of insulin and to seven post-mortem cases.


Subject(s)
Insulins , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Insulin
2.
Forensic Sci Int ; 259: 133-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26773224

ABSTRACT

In forensic toxicology, alternative matrices to blood are useful in case of limited, unavailable or unusable blood sample, suspected postmortem redistribution or long drug intake-to-sampling interval. The present article provides an update on the state of knowledge for the use of bile in forensic toxicology, through a review of the Medline literature from 1970 to May 2015. Bile physiology and technical aspects of analysis (sampling, storage, sample preparation and analytical methods) are reported, to highlight specificities and consequences from an analytical and interpretative point of view. A table summarizes cause of death and quantification in bile and blood of 133 compounds from more than 200 case reports, providing a useful tool for forensic physicians and toxicologists involved in interpreting bile analysis. Qualitative and quantitative interpretation is discussed. As bile/blood concentration ratios are high for numerous molecules or metabolites, bile is a matrix of choice for screening when blood concentrations are low or non-detectable: e.g., cases of weak exposure or long intake-to-death interval. Quantitative applications have been little investigated, but small molecules with low bile/blood concentration ratios seem to be good candidates for quantitative bile-based interpretation. Further experimental data on the mechanism and properties of biliary extraction of xenobiotics of forensic interest are required to improve quantitative interpretation.


Subject(s)
Bile/chemistry , Bile/physiology , Forensic Toxicology/methods , Humans , Sensitivity and Specificity
3.
Water Res ; 72: 315-30, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25466636

ABSTRACT

The efficacy of a fluidized powdered activated carbon (PAC) pilot (CarboPlus(®)) was studied in both nominal (total nitrification + post denitrification) and degraded (partial nitrification + no denitrification) configuration of the Seine Centre WWTP (Colombes, France). In addition to conventional wastewater parameters 54 pharmaceuticals and hormones (PhPHs) and 59 other emerging pollutants were monitored in influents and effluents of the pilot. Thus, the impacts of the WWTP configuration, the process operation and the physico-chemical properties of the studied compounds were assessed in this article. Among the 26 PhPHs quantified in nominal WWTP configuration influents, 8 have high dissolved concentrations (>100 ng/L), 11 have an intermediary concentration (10-100 ng/L) and 7 are quantified below 10 ng/L. Sulfamethoxazole is predominant (about 30% of the sum of the PhPHs). Overall, 6 PhPHs are poorly to moderately removed (<60%), such as ibuprofen, paracetamol or estrone, while 9 are very well removed (>80%), i.e. beta blockers, carbamazepine or trimethoprim, and 11 are well eliminated (60-80%), i.e. diclofenac, naproxen or sulfamethoxazole. In degraded WWTP configuration, higher levels of organic matter and higher concentrations of most pollutants are observed. Consequently, most PhPHs are substantially less removed in percentages but the removed flux is higher. Thus, the PAC dose required to achieve a given removal percentage is higher in degraded WWTP configuration. For the other micropollutants (34 quantified), artificial sweeteners and phthalates are found at particularly high concentrations in degraded WWTP configuration influents, up to µg/L range. Only pesticides, bisphenol A and parabens are largely eliminated (50-95%), while perfluorinated acids, PAHs, triclosan and sweeteners are not or weakly removed (<50%). The remaining compounds exhibit a very variable fate from campaign to campaign. The fresh PAC dose was identified as the most influencing operation parameter and is strongly correlated to performances. Charge and hydrophobicity of compounds have been recognized as crucial for the micropollutant adsorption on PAC, as well as the molecular weight. Finally, a PAC dose of 10 mg/L allows an average removal of 72-80% of the sum of the PhPHs in nominal WWTP configuration. The comparaison of the results with those from the scarce other studies tends to indicate that an extrapolation of them to different PAC processes and to other WWTPs could be possible and relevant, taking into account the differences of water quality from WWTP to WWTP.


Subject(s)
Charcoal/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification , Hormones/isolation & purification , Pharmaceutical Preparations/isolation & purification , Pilot Projects , Powders , Water Quality
4.
Int J Legal Med ; 127(5): 915-21, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23400420

ABSTRACT

Bone marrow (BM) analysis is of forensic interest for postmortem toxicological investigations where blood samples are unavailable or unusable. Due to the lack of studies, it remains difficult to interpret concentrations of xenobiotics measured in this matrix. Based on a statistical approach published previously to interpret meprobamate concentrations in bile and vitreous humor, we propose here a diagnostic test for interpretation of BM meprobamate concentrations from analysis of 99 sets of autopsy data. The mean age was 48 years (range 18-80 years, one unknown) for males and 50 years (range 19-80 years, one unknown) for females, with a male/female ratio at 0.768. A BM concentration threshold of 11.3 µg/g was found to be statistically equivalent to that of a blood meprobamate concentration threshold of 50 µg/ml in distinguishing overdose from therapeutic use. The intrinsic qualities of this diagnostic test were good with sensitivity of 0.82 and specificity of 0.92. Compared to previous tests published with the same objective on vitreous humor and bile, this study shows that BM is a useful alternative matrix to reveal meprobamate overdose when blood, vitreous humor, and bile are not available or unusable.


Subject(s)
Bone Marrow/chemistry , Hypnotics and Sedatives/analysis , Meprobamate/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Drug Overdose/diagnosis , Female , Forensic Toxicology , Gas Chromatography-Mass Spectrometry , Humans , Likelihood Functions , Limit of Detection , Male , Middle Aged , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Young Adult
5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 879(27): 2909-18, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21907645

ABSTRACT

Pharmacokinetic studies and postmortem toxicological investigations require a validated analytical technique to quantify drugs on a large number of matrices. Three-step liquid/liquid extraction with online derivatization (silylation) ahead of analysis by gas chromatography-tandem mass spectrometry was developed and validated on rabbit specimens in order to quantify citalopram and 4 benzodiazepines (diazepam, nordazepam, oxazepam and temazepam) in 11 biological matrices (blood, urine, bile, vitreous humor, liver, kidney, skeletal muscle, brain, adipose tissue, bone marrow (BM) and lung). Since the 11 biological matrices came from the same animal species, full validation was performed on 1 matrix, bone marrow (considered the most complex), while the other 10 underwent partial validation. Due to non-negligible matrix effects, calibration curves were performed on each matrix. Within-day and between-day precision (less than 12.0% and 12.6%, respectively) and accuracy (from 88.9% to 106.4%) were acceptable on BM at both low and high concentrations. Assessment on the other matrices confirmed accuracy and within-day precision (less than 12%, and generally between 85.1% and 114.5%, respectively). The lower limit of quantification of the method was 1ng/g for nordazepam, 5ng/g for citalopram and 10ng/g for oxazepam, diazepam and temazepam. The combination of 3-step extraction and MS/MS detection provided good selectivity in all matrices, including the most lipid-rich. Application to real-case samples showed that the method was sensitive enough to describe distribution patterns in an animal experiment, and specific enough to detect molecules in highly putrefied samples from human postmortem cases.


Subject(s)
Benzodiazepinones/analysis , Body Fluids/chemistry , Citalopram/analysis , Gas Chromatography-Mass Spectrometry/methods , Tandem Mass Spectrometry/methods , Animals , Autopsy , Benzodiazepinones/chemistry , Citalopram/chemistry , Forensic Medicine , Histocytochemistry , Humans , Least-Squares Analysis , Rabbits , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
6.
Forensic Sci Int ; 210(1-3): 149-53, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21439741

ABSTRACT

Bone marrow (BM) analysis is of forensic interest in postmortem toxicological investigation in case of limited, unavailable or unusable blood samples. However, it remains difficult to determine whether a drug BM concentration is therapeutic or represents overdose, due to the lack of studies on this alternative matrix. Given the variations in BM composition in the body, sample location was suggested to be a relevant factor in assessing BM concentration. The aim of the present study was to compare postmortem caffeine concentrations in various BM sample locations and secondly to consider the correlation between BM and blood concentrations. Six BM samples (right and left side: proximal and medial femur and 5th rib) and a blood sample were collected from 21 forensic autopsies. Gas chromatography coupled to tandem mass spectrometry was performed. Blood caffeine concentrations ranged from 60 to 7591ng/mL. Femoral and rib BM concentrations ranged from 51 to 6171ng/g and 66 to 7280ng/g, respectively. Blood concentrations were always higher than BM concentrations. As a good correlation was demonstrated between blood and rib BM and between blood and the average of the four femoral BM concentrations, blood caffeine concentrations could be correctly extrapolated from BM concentrations. BM caffeine concentration was found to depend on sample location. Rib BM caffeine concentrations appeared to be systematically greater than averaged femur values and concentrations were much more variable between the 4 femur BM samples than between the 2 ribs. From a practical point of view, for caffeine analysis, rib BM appeared more relevant than femoral BM, which requires multisampling to overcome the concentration variability problem.


Subject(s)
Bone Marrow/chemistry , Caffeine/analysis , Central Nervous System Stimulants/analysis , Postmortem Changes , Adult , Aged , Aged, 80 and over , Chromatography, Gas , Female , Femur , Forensic Toxicology , Humans , Male , Middle Aged , Ribs , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...