Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611764

ABSTRACT

Gas-phase ion chemistry influences atmospheric processes, particularly in the formation of cloud condensation nuclei by producing ionic and neutral species in the upper troposphere-stratosphere region impacted by cosmic rays. This work investigates an exothermic ionic route to the formation of hydroperoxyl radical (HO2) and protonated formaldehyde from methanol radical cation and molecular oxygen. Methanol, a key atmospheric component, contributes to global emissions and participates in various chemical reactions affecting atmospheric composition. The two reactant species are of fundamental interest due to their role in atmospheric photochemical reactions, and HO2 is also notable for its production during lightning events. Our experimental investigations using synchrotron radiation reveal a fast hydrogen transfer from the methyl group of methanol to oxygen, leading to the formation of CH2OH+ and HO2. Computational analysis corroborates the experimental findings, elucidating the reaction dynamics and hydrogen transfer pathway. The rate coefficients are obtained from experimental data and shows that this reaction is fast and governed by capture theory. Our study contributes to a deeper understanding of atmospheric processes and highlights the role of ion-driven reactions in atmospheric chemistry.

2.
Phys Chem Chem Phys ; 25(36): 24643-24656, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37665608

ABSTRACT

Radiotherapy is one of the most widespread and efficient strategies to fight malignant tumors. Despite its broad application, the mechanisms of radiation-DNA interaction are still under investigation. Theoretical models to predict the effects of a particular delivered dose are still in their infancy due to the difficulty of simulating a real cell environment, as well as the inclusion of a large variety of secondary processes. This work reports the first experimental study of the ion-molecule reactions of the H2O˙+ and OH+ ions, produced by photoionization with synchrotron radiation, with a furan (c-C4H4O) molecule, a template for deoxyribose sugar in DNA. The present experiments, performed as a function of the collision energy of the ions and the tunable photoionization energy, provide key parameters for the theoretical modelling of the effect of radiation dose, like the absolute cross sections for producing protonated furan (furanH+) and a radical cation (furan˙+), the most abundant products, which can amount up to 200 Å2 at very low collision energies (<1.0 eV). The experimental results show that furanH+ is more fragile, indicating how the protonation of the sugar component of the DNA may favor its dissociation with possible major radiosensitizing effects. Moreover, the ring opening of furanH+ isomers and the potential energy surface of the most important fragmentation channels have been explored by molecular dynamics simulations and quantum chemistry calculations. The results show that, in the most stable isomer of furanH+, the ring opening occurs via a low energy pathway with carbon-oxygen bond cleavage, followed by the loss of neutral carbon monoxide and the formation of the allyl cation CH2CHCH2+, which instead is not observed in the fragmentation of furan˙+. At higher energies the ring opening through the carbon-carbon bond is accompanied by the loss of formaldehyde, producing HCCCH2+, the most intense fragment ion detected in the experiments. This work highlights the importance of the secondary processes, like the ion-molecule reactions at low energies in the radiation damage due to their very large cross sections, and it aims to provide benchmark data for the development of suitable models to approach this low collision energy range.

3.
Phys Chem Chem Phys ; 25(37): 25619-25628, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721164

ABSTRACT

The impact of cosmic rays' energetic subatomic particles on climate and global warming is still controversial and under debate. Cosmic rays produce ions that can trigger fast reactions affecting chemical networks in the troposphere and stratosphere especially when a large amount of relevant trace gases such as carbon dioxide, methane, sulfur dioxide and water are injected by volcanic eruptions. This work focuses on synchrotron experiments and an ab initio theoretical study of the ion chemistry of carbon dioxide and nitrous oxide radical cations reacting with water. These molecules catalyze a fast exothermic formation of hydronium ions H3O+ and the hydroxyl radical OH, the main oxidant in the atmosphere. Moreover, theoretical calculations demonstrate that at the end of the catalytic cycle, CO2 and N2O are produced vibrationally excited and subsequently they quench in the microsecond time scale by collision with the surrounding atmospheric molecules at the pressure and temperature of the upper-troposphere/stratosphere. The chemistry involved in these reactions has a strong impact on the oxidant capacity of the atmosphere, on the sulfate aerosol production, on the cloud formation and eventually on the chemical networks controlling climate and global warming models.

4.
Nanomaterials (Basel) ; 13(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446414

ABSTRACT

Low-energy electrons (Auger electrons) can be produced via the interaction of photons with gold atoms in gold nanorods (AuNRs). These electrons are similar to those emitted during the decay of technetium-99m (99mTc), a radioactive nuclide widely used for diagnostics in nuclear medicine. Auger and internal conversion (IC) electron emitters appropriately targeted to the DNA of tumors cells may, therefore, represent a new radiotherapeutic approach. 99mTc radiopharmaceuticals, which are used for diagnosis, could indeed be used in theragnostic fields when loaded on AuNRs and delivered to a tumor site. This work aims to provide a proof of concept (i) to evaluate AuNRs as carriers of 99mTc-based radiopharmaceuticals, and (ii) to evaluate the efficacy of Auger electrons emitted by photon-irradiated AuNRs in inducing radio-induced damage in T98G cells, thus mimicking the effect of Auger electrons emitted during the decay of 99mTc used in clinical settings. Data are presented on AuNRs' chemical characterization (with an aspect ratio of 3.2 and Surface Plasmon Resonance bands at 520 and 680 nm) and the loading of pharmaceuticals (after 99mTc decay) on their surface. Spectroscopic characterizations, such as UV-Vis and synchrotron radiation-induced X-ray photoelectron (SR-XPS) spectroscopies, were performed to investigate the drug-AuNR interaction. Finally, preliminary radiobiological data on cell killing with AuNRs are presented.

5.
J Phys Chem A ; 126(22): 3463-3471, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35638704

ABSTRACT

The exothermic hydrogen transfer from H2 to CO2·+ leading to H and HCO2+ is investigated in a combined experimental and theoretical work. The experimental mass/charge ratios of the ionic product (HCO2+) and the ionic reactant (CO2·+) are recorded as a function of the photoionization energy of the synchrotron radiation. Theoretical density functional calculations and variational transition state theory are employed and adapted to analyze the energetic and the kinetics of the reaction, which turns out to be barrierless and with nonthermal rate coefficients controlled by nonstatistical processes. This study aims to understand the mechanisms and energetics that drive the reactivity of the elementary reaction of CO2·+ with H2 in different processes.

6.
ACS Sustain Chem Eng ; 10(5): 1888-1898, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35154910

ABSTRACT

The fabrication of enzyme-based biosensors has received much attention for their selectivity and sensitivity. In particular, laccase-based biosensors have attracted a lot of interest for their capacity to detect highly toxic molecules in the environment, becoming essential tools in the fields of white biotechnology and green chemistry. The manufacturing of a new, metal-free, laccase-based biosensor with unprecedented reuse and storage capabilities has been achieved in this work through the application of the electrospray deposition (ESD) methodology as the enzyme immobilization technique. Electrospray ionization (ESI) has been used for ambient soft-landing of laccase enzymes on a carbon substrate, employing sustainable chemistry. This study shows how the ESD technique can be successfully exploited for the fabrication of a new promising environment-friendly electrochemical amperometric laccase-based biosensor, with storage capability up to two months without any particular care and reuse performance up to 63 measurements on the same electrode just prepared and 20 measurements on the one-year-old electrode subjected to redeposition. The laccase-based biosensor has been tested for catechol detection in the linear range 2-100 µM, with a limit of detection of 1.7 µM, without interference from chrome, cadmium, arsenic, and zinc and without any memory effects.

7.
Curr Radiopharm ; 15(1): 32-39, 2022.
Article in English | MEDLINE | ID: mdl-33397277

ABSTRACT

BACKGROUND: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a ß- emitting radioimmunoconjugate (90Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach. METHODS: The synthesis of 90Y-DOTA-nimotuzumab was performed in two days. Nimotuzumab was conjugated with a 50-fold excess of DOTA and then labelled with 90Y3+. The 90Y-DOTA-nimotuzumab preparation was optimized considering several parameters such as pH, temperature and reaction volume. Moreover, the 90Y-DOTA-nimotuzumab stability was evaluated in human plasma. RESULTS: The radioimmunoconjugate 90Y-DOTA-nimotuzumab was obtained with a radiochemical purity greater than 96%, and showed a good stability at 20°C as well as at 37°C in human plasma. CONCLUSIONS: The optimized conditions for a mild and easy preparation of 90Y-DOTA-nimotuzumab joined to a promising stability under physiological conditions suggest to propose this radioimmunoconjugate as a potential diagnostic radiopharmaceutical for ß- radio-guided surgery.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized , Heterocyclic Compounds , Humans , Immunoconjugates/pharmacology , Organometallic Compounds , Radiopharmaceuticals/pharmacology , Yttrium Radioisotopes/therapeutic use
8.
Chemphyschem ; 22(23): 2387-2391, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34597457

ABSTRACT

Nitroimidazoles are a class of chemicals with a remarkable broad spectrum of applications from the production of explosives to the use as radiosensitizers in radiotherapy. The understanding of thedynamics of their fragmentation induced by ionizing sources is of fundamental interest. The goal of this work is to theoretically investigate the kinetic competition between the two most important decomposition channels of 2, 4 and 5-Nitroimidazole cations: the NO and NO2 losses. The calculated rate constants of the two processes are in very good agreement with the experimental Photoelectron-Photoion Coincidence (PEPICO) branching ratio. This study solves the intriguing and theoretically unexplained experimental observation that 2-Nitroimidazole, at variance with the other two regio-isomers is a source for only NO at low energies (<12.76 eV). This is a key point for biomedical application of the nitroimidazoles, because NO is the vasodilator that favors the reoxigenation of hypoxic tumor tissues.

9.
J Phys Chem A ; 124(37): 7491-7499, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32786965

ABSTRACT

Dihalomethanes XCH2Y (X and Y = F, Cl, Br, and I) are a class of compounds involved in several processes leading to the release of halogen atoms, ozone consumption, and aerosol particle formation. Neutral dihalomethanes have been largely studied, but chemical physics properties and processes involving their radical ions, like the pathways of their decomposition, have not been completely investigated. In this work the photodissociation dynamics of the ClCH2I molecule has been explored in the photon energy range 9-21 eV using both VUV rare gas discharge lamps and synchrotron radiation. The experiments show that, among the different fragment ions, CH2I+ and CH2Cl+, which correspond to the Cl- and I-losses, respectively, play a dominant role. The experimental ionization energy of ClCH2I and the appearance energies of the CH2I+ and CH2Cl+ ions are in agreement with the theoretical results obtained at the MP2/CCSD(T) level of theory. Computational investigations have been also performed to study the isomerization of geminal [ClCH2I]•+ into the iso-chloroiodomethane isomers: [CH2I-Cl]•+ and [CH2Cl-I]•+.

10.
Biosens Bioelectron ; 163: 112299, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32568697

ABSTRACT

Enzymes immobilisation represents a critical issue in the design of biosensors to achieve standardization as well as suitable analytical performances in terms of sensitivity, selectivity, and stability. In this work electrospray deposition (ESD) has been exploited as a novel technique for the immobilisation of laccase enzyme on carbon black modified screen-printed electrodes. The aim is to fabricate an amperometric biosensor for phenolic compound detection. The electrodes produced by ESD have been analysed by scanning electron microscopy and characterised electrochemically to prove that this immobilisation technique is suited to manufacture high performance biosensors. The results show that the laccase enzyme maintains its activity after undergoing the electrospray ionisation process and deposition and the fabricated biosensor has improved performances in terms of storage (up to 3 months at room temperature) and working (up to 25 measurements on the same electrode) stability. The laccase-based biosensor has been tested for phenolic compound detection, with catechol as target analyte, in the linear range 2.5-50 µM, with 2.0 µM limit of detection, without interference from lead, cadmium, atrazine, and paraoxon, and without matrix effect in drinking, surface, and wastewater.


Subject(s)
Biosensing Techniques , Laccase , Carbon , Electrodes , Enzymes, Immobilized , Soot
11.
Sci Rep ; 10(1): 4015, 2020 03 04.
Article in English | MEDLINE | ID: mdl-32132632

ABSTRACT

The possibility to use ß- decaying isotopes for radioguided surgery (RGS) has been recently proposed, and first promising tests on ex-vivo samples of Meningioma and intestinal Neuroendocrine Tumor (NET) have been published. This paper reports a study of the uptake of 68Ga-DOTATOC in pancreatic NETs (pNETs) in order to assess the feasibility of a new RGS approach using 90Y-DOTATOC. Tumor and healthy pancreas uptakes were estimated from 68Ga-DOTATOC PET/CT scans of 30 patients with pNETs. From the obtained SUVs (Standardised Uptake Value) and TNRs (Tumor Non tumor Ratio), an analysis algorithm relying on a Monte Carlo simulation of the detector has been applied to evaluate the performances of the proposed technique. Almost all considered patients resulted to be compatible with the application of ß--RGS assuming to administer 1.5 MBq/kg of activity of 90Y-DOTATOC 24 h before surgery, and a sampling time of few seconds. In just 2 cases the technique would have required a mildly increased amount of activity or of sampling time. Despite a high physiological uptake of 68Ga-DOTATOC in the healthy pancreas, the proposed RGS technique promises to be effective. This approach allows RGS to find application also in pancreatic diseases, where traditional techniques are not viable.


Subject(s)
Algorithms , Intestinal Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Positron Emission Tomography Computed Tomography , Stomach Neoplasms , Surgery, Computer-Assisted , Aged , Beta Particles , Female , Humans , Intestinal Neoplasms/diagnostic imaging , Intestinal Neoplasms/therapy , Male , Middle Aged , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/therapy , Octreotide/administration & dosage , Octreotide/analogs & derivatives , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/therapy
12.
Chemphyschem ; 21(11): 1146-1156, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32203633

ABSTRACT

SO2 has been proposed in solar geoengineering as a precursor of H2 SO4 aerosol, a cooling agent active in the stratosphere to contrast climate change. Atmospheric ionization sources can ionize SO2 into excited states of S O 2 · + , which quickly reacts with trace gases in the stratosphere. In this work we explore the reaction of H 2 D 2 with S O 2 · + excited by tunable synchrotron radiation, leading to H S O 2 + + H ( D S O 2 + + D ), where H contributes to O3 depletion and OH formation. Density Functional Theory and Variational Transition State Theory have been used to investigate the dynamics of the title barrierless and exothermic reaction. The present results suggest that solar geoengineering models should test the reactivity of S O 2 · + with major trace gases in the stratosphere, such as H2 since this is a relevant channel for the OH formation during the nighttime when there is not OH production by sunlight. OH oxides SO2 , triggering the chemical reactions leading to H2 SO4 aerosol.

13.
Front Chem ; 7: 329, 2019.
Article in English | MEDLINE | ID: mdl-31157205

ABSTRACT

Photoionization mass spectrometry, photoelectron-photoion coincidence spectroscopic technique, and computational methods have been combined to investigate the fragmentation of two nitroimidazole derived compounds: the metronidazole and misonidazole. These molecules are used in radiotherapy thanks to their capability to sensitize hypoxic tumor cells to radiation by "mimicking" the effects of the presence of oxygen as a damaging agent. Previous investigations of the fragmentation patterns of the nitroimidazole isomers (Bolognesi et al., 2016; Cartoni et al., 2018) have shown their capacity to produce reactive molecular species such as nitric oxide, carbon monoxide or hydrogen cyanide, and their potential impact on the biological system. The results of the present work suggest that different mechanisms are active for the more complex metronidazole and misonidazole molecules. The release of nitric oxide is hampered by the efficient formation of nitrous acid or nitrogen dioxide. Although both metronidazole and misonidazole contain imidazole ring in the backbone, the side branches of these molecules lead to very different bonding mechanisms and properties.

14.
Front Chem ; 7: 140, 2019.
Article in English | MEDLINE | ID: mdl-30972318

ABSTRACT

Gas phase ion chemistry has fundamental and applicative purposes since it allows the study of the chemical processes in a solvent free environment and represents models for reactions occurring in the space at low and high temperatures. In this work the ion-molecule reaction of sulfur dioxide ion SO 2 . + with carbon monoxide CO is investigated in a joint experimental and theoretical study. The reaction is a fast and exothermic chemical oxidation of CO into more stable CO2 by a metal free species, as SO 2 . + , excited into ro-vibrational levels of the electronic ground state by synchrotron radiation. The results show that the reaction is hampered by the enhancement of internal energy of sulfur dioxide ion and the only ionic product is SO.+. The theoretical approach of variational transition state theory (VTST) based on density functional electronic structure calculations, shows an interesting and peculiar reaction dynamics of the interacting system along the reaction path. Two energy minima corresponding to [SO2-CO].+ and [OS-OCO].+ complexes are identified. These minima are separated by an intersystem crossing barrier which couples the bent 3B2 state of CO2 with C2v symmetry and the 1A1 state with linear D∞h symmetry. The spin and charge reorganization along the minimum energy path (MEP) are analyzed and eventually the charge and spin remain allocated to the SO.+ moiety and the stable CO2 molecule is easily produced. There is no bottleneck that slows down the reaction and the values of the rate coefficient k at different temperatures are calculated with capture theory. A value of 2.95 × 10-10 cm3s-1molecule-1 is obtained at 300 K in agreement with the literature experimental measurement of 3.00 × 10-10 ± 20% cm3s-1molecule-1, and a negative trend with temperature is predicted consistently with the experimental observations.

15.
Front Chem ; 7: 151, 2019.
Article in English | MEDLINE | ID: mdl-31001511

ABSTRACT

Tunability and selectivity of synchrotron radiation have been used to study the excitation and ionization of 2-nitroimidazole at the C, N, and O K-edges. The combination of a set of different measurements (X-ray photoelectron spectroscopy, near-edge photoabsorption spectroscopy, Resonant Auger electron spectroscopy, and mass spectrometry) and computational modeling have successfully disclosed local effects due to the chemical environment on both excitation/ionization and fragmentation of the molecule.

16.
J Pharm Biomed Anal ; 156: 8-15, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29704772

ABSTRACT

The aim of the present work has been the mass spectrometry characterization of the Nimotuzumab (NIM) antibody chemically modified with the bifunctional chelating agent para-S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraaza cyclododecanetetraacetic acid (p-SCN-Bn-DOTA). The conjugate, upon labeling with the pure ß--emitter 90Y3+, could represent a promising candidate as radiotracer for an innovative radio-guided surgery (RGS) technique, developed and patented by researchers of our group, which uses a probe system for intraoperative detection of tumor residues exploiting the selective uptake of ß--emitting tracers. The results reported in this study show that multiple DOTA molecules bind to lysine residues of both light and heavy chains of the antibody and, probably, some of them are linked to the variable region of antibody. Moreover, the new mass spectrometric analysis highlights the presence of unreacted NIM in the final product. The information obtained by this work is of fundamental importance in the perspective to utilize this conjugate as a radiocompound after its labeling with 90Y3+ radioisotope. Indeed, the conjugation efficiency and the presence of unreacted NIM affect the specific activity of the final radiotracer which binds specific receptor.


Subject(s)
Antibodies, Monoclonal, Humanized/analysis , Chelating Agents/chemistry , Heterocyclic Compounds/chemistry , Immunoconjugates/analysis , Isothiocyanates/chemistry , Surgery, Computer-Assisted/methods , Antibodies, Monoclonal, Humanized/chemistry , Immunoconjugates/chemistry , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Radioactive Tracers , Yttrium Radioisotopes
17.
J Colloid Interface Sci ; 513: 10-19, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29128618

ABSTRACT

Gold nanoparticles with an average diameter of 10 nm, functionalized by the dye molecule rhodamine B isothiocyanate, have been synthesized. The resulting material has been extensively characterized both chemically, to investigate the bonding between the dye molecules and the nanoparticles, and physically, to understand the details of the aggregation induced by interaction between dye molecules on different nanoparticles. The plasmonic response of the system has been further characterized by measurement and theoretical simulation of the static UV-Vis extinction spectra of the aggregates produced following different synthesis procedures. The model parameters used in the simulation gave further useful information on the aggregation and its relationship to the plasmonic response. Finally, we investigated the time dependence of the plasmonic effects of the nanoparticles and fluorescence of the dye molecule using an ultrafast pump-probe optical method. By modulating the quantity of dye molecules on the surface of the nanoparticles it was possible to exert fine control over the plasmonic response of nanoparticles.

18.
Phys Med ; 43: 127-133, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29195555

ABSTRACT

PURPOSE: Beta-particle radioguided tumor resection may potentially overcome the limitations of conventional gamma-ray guided surgery by eliminating, or at least minimizing, the confounding effect of counts contributed by activity in adjacent normal tissues. The current study evaluates the clinical feasibility of this approach for a variety of radionuclides. Nowadays, the only ß- radioisotope suited to radioguided surgery is 90Y. Here, we study the ß- probe prototype capability to different radionuclides chosen among those used in nuclear medicine. METHODS: The counting efficiency of our probe prototype was evaluated for sources of electrons and photons of different energies. Such measurements were used to benchmark the Monte Carlo (MC) simulation of the probe behavior, especially the parameters related to the simulation of the optical photon propagation in the scintillation crystal. Then, the MC simulation was used to derive the signal and the background we would measure from a small tumor embedded in the patient body if one of the selected radionuclides is used. RESULTS: Based on the criterion of detectability of a 0.1 ml tumor for a counting interval of 1 s and an administered activity of 3 MBq/kg, the current probe yields a detectable signal over a wide range of Standard Uptake Values (SUVs) and tumor-to-non-tumor activity-concentration ratios (TNRs) for 31Si, 32P, 97Zr, and 188Re. Although efficient counting of 83Br, 133I, and 153Sm proved somewhat more problematic, the foregoing criterion can be satisfied for these isotopes as well for sufficiently high SUVs and TNRs.


Subject(s)
Beta Particles , General Surgery/methods , Feasibility Studies , Neoplasms/surgery , Nuclear Medicine , Radioisotopes , Radiometry
19.
Chemistry ; 23(28): 6772-6780, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28177544

ABSTRACT

In this work an experimental and theoretical study on the formation of HSO2+ ion from the SO2⋅+ +CH4 and SO2⋅+ +H2 O ion-molecule reactions at different temperatures is reported. Tunable synchrotron radiation was used to produce the SO2⋅+ ion in excited ro-vibrational levels of the ionic ground state X2 A1 and mass spectrometry was employed to identify the product ions. Calculations in the frame of the density functional theory and variational transition state theory were combined to explore the dynamics of the reactions. The experimental results show that HSO2+ is the only product in both reactions. Its yield decreases monotonically with photon energy in the SO2⋅+ +H2 O reaction, while it decreases at first and then increases in the SO2⋅+ +CH4 reaction. Theory confirms this trend by calculating the rate constants at different temperatures and explains the results by means of the polar, spin and charge effects as well as structural reorganization occurring in the reaction coordinate. The dynamic behavior observed in these two reactions is of general and fundamental interest. It can also provide some insights on the role of these reactions in astrochemistry as well as in their use as models for bond-activation reactions.

20.
Phys Chem Chem Phys ; 18(25): 16721-9, 2016 Jun 22.
Article in English | MEDLINE | ID: mdl-27271080

ABSTRACT

The fragmentation of uracil molecules and pure and nano-hydrated uracil clusters by (12)C(4+) ion impact is investigated. This work focuses on the fragmentation behavior of complex systems and the effect of the environment. On the one hand, it is found that the environment in the form of surrounding uracil or water molecules has a significant influence on the fragmentation dynamics, providing an overall 'protective' effect, while on the other hand we observe the opening of specific fragmentation channels. In particular, we report on the first observation of a series of hydrated fragments. This indicates a strong interaction between uracil and water molecules, holding the water clusters bound to the observed molecular fragments.

SELECTION OF CITATIONS
SEARCH DETAIL
...