Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 9058, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33907205

ABSTRACT

Thorium carbide to be tested as target material for the production of 225Ac with the ISOL method, was produced via carbothermal reduction of ThO2 nanoparticles by graphite and graphene oxide, respectively. The use of graphene oxide (GO) as carbon source resulted in a reduced reactivity compared to graphite, confirmed by the presence of unreacted ThO2 mainly in the core of the samples. The reacted ThO2 or ThC2-GO showed a faster reactivity in air, mainly observed as ThC2 amorphization. The specific surface area of the ThC2-GO samples was almost doubled compared to ThC2-graphite samples. The effect of these microstructural features was analysed in terms of thermal diffusivity and calculated thermal conductivity that were both reduced in ThC2-GO samples, however the difference with ThC2-graphite samples decreased at increasing temperature. The present study shows that the use of unreduced GO inhibits the solid-state reaction between ThO2 and C; on the other hand, the high reactivity of the ThC2 so produced is expected to be beneficial for the 225Ac production with the ISOL method, affording a high release efficiency. It is expected that the use of reduced GO could represent a good solution for highly efficient ThC2 targets.

2.
Sci Rep ; 9(1): 9154, 2019 06 24.
Article in English | MEDLINE | ID: mdl-31235878

ABSTRACT

The possibility to detect fast neutrons as a distinct signal from that one of γ-rays background is surely of great importance for several topics, spanning from homeland security to radiation monitoring in nuclear physics research plants. Nowadays, Helium-3 based detectors are extremely expensive, while the use of large volume liquid scintillators presents serious concerns related to spillage risks and waste disposal. A very attractive alternative is the use of commercially available solid scintillators, which exploits an aromatic polymer matrix entrapping very high loadings of primary dye, thereby enabling the use of pulse shape analysis (PSA) to discriminate between fast neutrons and γ-rays. In this work, we analyse in detail the optical features of a solid scintillator composed by polymethylphenylsiloxane (PMPS) as base polymer loaded with moderate amounts of 2,5-diphenyloxazole (PPO). Furthermore, fluorescence decay kinetics have been correlated to the observed pulse shape discrimination capabilities of this radiation and thermally resistant scintillator, whose performances have been discussed in terms of conformational features and excimers formation revealed by the optical analyses.

3.
Nanotechnology ; 29(46): 465702, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30168801

ABSTRACT

The DPP (diethyl 1-propylphosphonate) and ODPA (octadecylphosphonic acid) molecules are studied as precursors for the monolayer doping (MLD) of germanium. Their adsorption behaviour is investigated, revealing different physicochemical interactions between the phosphorus-containing molecules and the Ge surfaces. It is discovered that DPP adsorption occurs after the oxidation of Ge surface, while the ODPA undergoes chemisorption on -H terminated surfaces. Quantitative phosphorus analysis demonstrates that in the first case more than one monolayer is formed (from 2 to 4), while in the second a single monolayer is formed. Moreover, the analysis of phosphorus diffusion from the surface layers into the Ge matrix reveals that conventional thermal annealing processes are not suitable for Ge injection due to a higher activation energy of the process in comparison with silicon. On the contrary, pulsed laser melting is effective in forming a doped layer, owing to the precursor's decomposition under UV light.

SELECTION OF CITATIONS
SEARCH DETAIL
...