Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 13(1): 84-91, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35059127

ABSTRACT

Hematopoietic progenitor kinase 1 (HPK1) is implicated as a negative regulator of T-cell receptor-induced T-cell activation. Studies using HPK1 kinase-dead knock-in animals have demonstrated the loss of HPK1 kinase activity resulted in an increase in T-cell function and tumor growth inhibition in glioma models. Herein, we describe the discovery of a series of small molecule inhibitors of HPK1. Using a structure-based drug design approach, the kinase selectivity of the molecules was significantly improved by inducing and stabilizing an unusual P-loop folded binding mode. The metabolic liabilities of the initial 7-azaindole high-throughput screening hit were mitigated by addressing a key metabolic soft spot along with physicochemical property-based optimization. The resulting spiro-azaindoline HPK1 inhibitors demonstrated improved in vitro ADME properties and the ability to induce cytokine production in primary human T-cells.

2.
Mol Ecol Resour ; 16(6): 1279-1286, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27482846

ABSTRACT

Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods.


Subject(s)
Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Mitochondria/genetics , Plastids/genetics , Sequence Analysis, DNA/methods , Computational Biology/methods
3.
Bioorg Med Chem Lett ; 24(24): 5769-5776, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25453817

ABSTRACT

The identification of a new series of RORc inverse agonists is described. Comprehensive structure-activity relationship studies of this reversed sulfonamide series identified potent RORc inverse agonists in biochemical and cellular assays which were also selective against a panel of nuclear receptors. Our work has contributed a compound that may serve as a useful in vitro tool to delineate the complex biological pathways involved in signalling through RORc. An X-ray co-crystal structure of an analogue with RORc has also provided useful insights into the binding interactions of the new series.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Sulfonamides/chemistry , Binding Sites , Cell Survival/drug effects , Crystallography, X-Ray , Cytokines/biosynthesis , Drug Inverse Agonism , HEK293 Cells , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/toxicity
4.
J Med Chem ; 55(12): 5887-900, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22626259

ABSTRACT

PI3Kδ is a lipid kinase and a member of a larger family of enzymes, PI3K class IA(α, ß, δ) and IB (γ), which catalyze the phosphorylation of PIP2 to PIP3. PI3Kδ is mainly expressed in leukocytes, where it plays a critical, nonredundant role in B cell receptor mediated signaling and provides an attractive opportunity to treat diseases where B cell activity is essential, e.g., rheumatoid arthritis. We report the discovery of novel, potent, and selective PI3Kδ inhibitors and describe a structural hypothesis for isoform (α, ß, γ) selectivity gained from interactions in the affinity pocket. The critical component of our initial pharmacophore for isoform selectivity was strongly associated with CYP3A4 time-dependent inhibition (TDI). We describe a variety of strategies and methods for monitoring and attenuating TDI. Ultimately, a structure-based design approach was employed to identify a suitable structural replacement for further optimization.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Cytochrome P-450 CYP3A Inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Arthritis, Rheumatoid/enzymology , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Cell Line , Cytochrome P-450 CYP3A , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Humans , Inhibitory Concentration 50 , Models, Molecular , Phosphatidylinositol 3-Kinases/chemistry , Protein Conformation , Substrate Specificity , Time Factors
5.
J Telemed Telecare ; 11(4): 199-204, 2005.
Article in English | MEDLINE | ID: mdl-15969796

ABSTRACT

All staff members of a child and adolescent mental health service were invited to participate in a survey about the use of email. Sixty-two of the 105 staff members responded to the survey, a participation rate of 59%. Of the respondents, 32 were allied health staff, 10 were nurses, seven were administrative staff, six were medical staff, three were operational staff and four were acting in a combination of these roles. The respondents reported extensive work-related email usage and considered that they were confident in using email despite low levels of training. However, they did not feel that they understood the legal and ethical issues involved. Furthermore, there was limited incorporation of email into standard record keeping. The majority of respondents thought that increased use of email would lead to a greater workload, a consequence they considered would probably increase over time. Many commented on the quick and practical use of this medium, but were wary about using email with individuals outside the service organization, especially if it were to contain clinical material. There was low use of email directly with clients, and clinicians were ambivalent about incorporating email into therapy. The results suggest that it is timely to consider the utility and appropriateness of email communication with clients and external service providers, and to formulate guidelines and procedures to ensure the confidentiality of client information and the safety of clients and staff.


Subject(s)
Adolescent Health Services , Attitude of Health Personnel , Electronic Mail , Mental Health Services , Adolescent , Child , Child, Preschool , Confidentiality , Electronic Mail/statistics & numerical data , Female , Humans , Male , Professional-Patient Relations , Surveys and Questionnaires , Workload
SELECTION OF CITATIONS
SEARCH DETAIL
...