Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 14(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35889783

ABSTRACT

Short-chain fatty acids (SCFA) produced from dietary non-digestible carbohydrate fermentation have metabolic effects in skeletal muscle; however, their effect on inflammatory mediator production is unknown. In this study, L6 myotubes were cultured with individual SCFA (acetate, propionate, and butyrate) at 0.5 mM and 2.5 mM ± 10 ng/mL lipopolysaccharide (LPS) or ± 500 µM palmitic acid (PA) for 24 h. In response to LPS, only butyrate had an effect at the lower concentration (0.5 mM), whereas at the higher concentration (2.5 mM) both propionate and butyrate reduced MCP-1, MIP-1α, and RANTES secretion (p < 0.05), and only butyrate reduced IL-6 secretion and intracellular protein levels of phospho-STAT3 (p < 0.05). In response to PA, 0.5 mM butyrate reduced protein expression of phospho-NFκB p65 and the secretion of IL-6, MIP-1α, and MCP-1, whereas all three SCFA reduced RANTES secretion (p < 0.05). At the 2.5 mM SCFA concentration combined with PA stimulation, all three SCFA reduced intracellular protein expression of phospho-NFκB p65 and phospho-STAT3 and secreted protein levels of MCP-1, IL-6, and RANTES, whereas only butyrate reduced secretion of MIP-1α (p < 0.05). Thus, SCFA exhibit differential effects on inflammatory mediator expression in response to LPS and PA stimulation, which has implications for their individual impacts on inflammation-mediated skeletal muscle dysfunction.


Subject(s)
Lipopolysaccharides , Propionates , Butyrates/metabolism , Chemokine CCL3 , Chemokine CCL5 , Dietary Carbohydrates , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Interleukin-6 , Lipopolysaccharides/pharmacology , Muscle Fibers, Skeletal/metabolism , Palmitic Acid/pharmacology , Propionates/metabolism
2.
J Nutr Biochem ; 95: 108763, 2021 09.
Article in English | MEDLINE | ID: mdl-33965532

ABSTRACT

Obesity is associated with inflammation and has been shown to increase breast cancer severity. The objective of this study was to examine the effect of fish oil (FO) supplementation in obesity-associated mammary tumorigenesis in the MMTV-neu(ndl)-YD5 mouse model of human epidermal growth factor receptor-2 positive BC. Female mice were fed one of three diets for 16 weeks: i) high fat diet [HF, % kacl: 41.2% lard, 18.7% corn oil (CO)], ii) an isocaloric HF plus menhaden FO diet (HF+FO, % kcal: 41.2 lard, 13.4% CO, 5.3% FO), iii) low fat diet (LF, % kcal: 4.7% lard, 6% CO). HF mice had increased body weight, visceral adipose weight and serum hormone concentrations (increased leptin and resistin; decreased adiponectin) versus LF, which was attenuated in the HF+FO group versus HF (P<.05). Compared to HF, tumor onset was delayed in HF+FO and LF mice (P<0.05). Compared to HF, HF+FO reduced mammary tumor multiplicity (-27%), tumor weight (-46%) and total tumor volume (-50%) (P<0.05). Additionally, HF+FO reduced mammary tumor multiplicity (-33%), tumor weight (-39%) and total tumor volume (-60%) versus LF. HF+FO improved mammary tumor apoptosis status with increased expression of pro-apoptotic Bad and decreased expression of anti-apoptotic Bcl-xLmediators versus HF (P<0.05). Additionally, HF+FO decreased tumor protein expression of activated Akt, NFκB p65 and STAT3, versus HF (P<0.05). Tumor mRNA expression of inflammatory mediators TNFα, IL-6 and leptin were reduced in HF+FO, whereas IL-10 expression was increased compared to HF (P<0.05). Collectively these results demonstrate the efficacy of FO supplementation for improving obesity-associated breast cancer outcomes.


Subject(s)
Apoptosis/drug effects , Fish Oils/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Inflammation/drug therapy , Mammary Neoplasms, Experimental/drug therapy , Obesity/chemically induced , Adipose Tissue/drug effects , Animals , Body Weight/drug effects , Breast Neoplasms , Cell Line, Tumor , Dietary Supplements , Fatty Acids/chemistry , Female , Fish Oils/administration & dosage , Humans , Mammary Glands, Animal/chemistry , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Random Allocation , Receptor, ErbB-2
SELECTION OF CITATIONS
SEARCH DETAIL
...