Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(18): 22367-22376, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37092734

ABSTRACT

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C K-edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 µB/C atom induced in the graphene layer. For a more precise estimation, we conducted PNR measurements. The PNR results indicate an induced magnetic moment of ∼0.41 µB/C atom at 10 K for epitaxial and rotated-domain graphene. Additional PNR measurements on graphene grown on a nonmagnetic Ni9Mo1 substrate, where no magnetic moment in graphene is measured, suggest that the origin of the induced magnetic moment is due to the opening of the graphene's Dirac cone as a result of the strong C pz-Ni 3d hybridization.

2.
J Appl Crystallogr ; 56(Pt 1): 12-17, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36777146

ABSTRACT

As a result of the availability of modern software and hardware, Bayesian analysis is becoming more popular in neutron and X-ray reflectometry analysis. The understandability and replicability of these analyses may be harmed by inconsistencies in how the probability distributions central to Bayesian methods are represented in the literature. Herein advice is provided on how to report the results of Bayesian analysis as applied to neutron and X-ray reflectometry. This includes the clear reporting of initial starting conditions, the prior probabilities, the results of any analysis and the posterior probabilities that are the Bayesian equivalent of the error bar, to enable replicability and improve understanding. It is believed that this advice, grounded in the authors' experience working in the field, will enable greater analytical reproducibility in the work of the reflectometry community, and improve the quality and usability of results.

3.
ACS Appl Mater Interfaces ; 13(17): 20788-20795, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33877796

ABSTRACT

All-oxide-based synthetic antiferromagnets (SAFs) are attracting intense research interest due to their superior tunability and great potentials for antiferromagnetic spintronic devices. In this work, using the La2/3Ca1/3MnO3/CaRu1/2Ti1/2O3 (LCMO/CRTO) superlattice as a model SAF, we investigated the layer-resolved magnetic reversal mechanism by polarized neutron reflectivity. We found that the reversal of LCMO layer moments is mediated by nucleation, expansion, and shrinkage of a magnetic soliton. This unique magnetic reversal process creates a reversed magnetic configuration of the SAF after a simple field cycling. Therefore, it can enable vertical data transfer from the bottom to the top of the superlattice. The physical origin of this intriguing magnetic reversal process could be attributed to the cooperation of the surface spin-flop effect and enhanced uniaxial magnetic anisotropy of the bottom LCMO layer. This work may pave a way to utilize all-oxide-based SAFs for three-dimensional spintronic devices with vertical data transfer and high-density data storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...