Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Insects ; 13(5)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35621732

ABSTRACT

Transposable elements (TEs) are genetically mobile units that move from one site to another within a genome. These units can mediate regulatory changes that can result in massive changes in genes expression. In fact, a precise identification of TEs can allow the detection of the mechanisms involving these elements in gene regulation and genome evolution. In the present study, a genome-wide analysis of the Hemipteran pest Bemisia tabaci was conducted using bioinformatics tools to identify, annotate and estimate the age of TEs, in addition to their insertion sites, within or near of the defensome genes involved in insecticide resistance. Overall, 1,292,393 TE copies were identified in the B. tabaci genome grouped into 4872 lineages. A total of 699 lineages were found to belong to Class I of TEs, 1348 belong to Class II, and 2825 were uncategorized and form the largest part of TEs (28.81%). The TE age estimation revealed that the oldest TEs invasion happened 14 million years ago (MYA) and the most recent occurred 0.2 MYA with the insertion of Class II TE elements. The analysis of TE insertion sites in defensome genes revealed 94 insertions. Six of these TE insertions were found within or near previously identified differentially expressed insecticide resistance genes. These insertions may have a potential role in the observed insecticide resistance in these pests.

2.
Insects ; 13(4)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35447755

ABSTRACT

Miniature inverted-repeat transposable elements MITEs are ubiquitous, non-autonomous class II transposable elements. The moths, Helicoverpa armigera and Helicoverpa zea, are recognized as the two most serious pest species within the genus. Moreover, these pests have the ability to develop insecticide resistance. In the present study, we conducted a genome-wide analysis of MITEs present in H. armigera and H. zea genomes using the bioinformatics tool, MITE tracker. Overall, 3570 and 7405 MITE sequences were identified in H. armigera and H. zea genomes, respectively. Comparative analysis of identified MITE sequences in the two genomes led to the identification of 18 families, comprising 140 MITE members in H. armigera and 161 MITE members in H. zea. Based on target site duplication (TSD) sequences, the identified families were classified into three superfamilies (PIF/harbinger, Tc1/mariner and CACTA). Copy numbers varied from 6 to 469 for each MITE family. Finally, the analysis of MITE insertion sites in defensome genes showed intronic insertions of 11 MITEs in the cytochrome P450, ATP-binding cassette transporter (ABC) and esterase genes in H. armigera whereas for H. zea, only one MITE was retrieved in the ABC-C2 gene. These insertions could thus be involved in the insecticide resistance observed in these pests.

3.
G3 (Bethesda) ; 11(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34849769

ABSTRACT

The whitefly, Bemisia tabaci is a hemipteran pest of vegetable crops vectoring a broad category of viruses. Currently, this insect pest showed a high adaptability and resistance to almost all the chemical compounds commonly used for its control. In many cases, transposable elements (TEs) contributed to the evolution of host genomic plasticity. This study focuses on the annotation of Mariner-like elements (MLEs) and their derived Miniature Inverted repeat Transposable Elements (MITEs) in the genome of B. tabaci. Two full-length MLEs belonging to mauritiana and irritans subfamilies were detected and named Btmar1.1 and Btmar2.1, respectively. Additionally, 548 defective MLE sequences clustering mainly into 19 different Mariner lineages of mauritiana and irritans subfamilies were identified. Each subfamily showed a significant variation in MLE copy number and size. Furthermore, 71 MITEs were identified as MLEs derivatives that could be mobilized via the potentially active transposases encoded by Btmar 1.1 and Btmar2.1. The vast majority of sequences detected in the whitefly genome present unusual terminal inverted repeats (TIRs) of up to 400 bp in length. However, some exceptions are sequences without TIRs. This feature of the MLEs and their derived MITEs in B. tabaci genome that distinguishes them from all the other MLEs so far described in insects, which have TIRs size ranging from 20 to 40 bp. Overall, our study provides an overview of MLEs, especially those with large TIRs, and their related MITEs, as well as diversity of their families, which will provide a better understanding of the evolution and adaptation of the whitefly genome.


Subject(s)
DNA Transposable Elements , Hemiptera , Animals , Hemiptera/genetics , Phylogeny , Transposases/metabolism
4.
Insects ; 11(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322432

ABSTRACT

The cotton bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is an important pest of many crops that has developed resistance to almost all groups of insecticides used for its management. Insecticide resistance was often related to Transposable Element (TE) insertions near specific genes. In the present study, we deeply retrieve and annotate TEs in the H. armigera genome using the Pipeline to Retrieve and Annotate Transposable Elements, PiRATE. The results have shown that the TE library consists of 8521 sequences representing 236,132 TE copies, including 3133 Full-Length Copies (FLC), covering 12.86% of the H. armigera genome. These TEs were classified as 46.71% Class I and 53.29% Class II elements. Among Class I elements, Short and Long Interspersed Nuclear Elements (SINEs and LINEs) are the main families, representing 21.13% and 19.49% of the total TEs, respectively. Long Terminal Repeat (LTR) and Dictyostelium transposable element (DIRS) are less represented, with 5.55% and 0.53%, respectively. Class II elements are mainly Miniature Inverted Transposable Elements (MITEs) (49.11%), then Terminal Inverted Repeats (TIRs) (4.09%). Superfamilies of Class II elements, i.e., Transib, P elements, CACTA, Mutator, PIF-harbinger, Helitron, Maverick, Crypton and Merlin, were less represented, accounting for only 1.96% of total TEs. In addition, we highlighted TE insertions in insecticide resistance genes and we successfully identified nine TE insertions belonging to RTE, R2, CACTA, Mariner and hAT superfamilies. These insertions are hosted in genes encoding cytochrome P450 (CyP450), glutathione S-transferase (GST), and ATP-binding cassette (ABC) transporter belonging to the G and C1 family members. These insertions could therefore be involved in insecticide resistance observed in this pest.

5.
Environ Pollut ; 266(Pt 2): 115227, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32721774

ABSTRACT

For several decades, use of nanoparticles (NP) on a global scale has been generating new potential sources of organism disruption. Recent studies have shown that NP can cause modifications on the biochemical macromolecular composition of microalgae and raised questions on the toxicity of plastic particles, which are widespread in the aquatic environment. Polystyrene (PS) particles are among the most widely used plastics in the world. In our experimentation, a combined approach of infrared spectroscopy and molecular biology (real-time PCR) has been applied in order to better apprehend the consequences of interactions between Chlamydomonas reinhardtii, freshwater microalgae and PS NP. Two references have been used, nitrogen deprivation -a well-documented stressor-, and gold nanoparticles (Au-NP). As regards biochemical composition, our experiments show a differing microalga response, according to the NP to which they have been exposed. Results with infrared spectroscopy and gene expression methods are consistent and illustrate variation among several carbohydrates (galactose…). Furthermore, PS-NP seem to react in the same direction as nitrogen limitation, thereby supporting the hypothesis that PS-NP can induce response mechanisms to environmental changes in microalgae. This study highlighted the interest of combining infrared spectroscopy and gene expression as means of monitoring microalgae response to nanoplastics.


Subject(s)
Chlamydomonas reinhardtii , Metal Nanoparticles , Microalgae , Nanoparticles , Water Pollutants, Chemical/analysis , Gold , Polystyrenes , Spectrum Analysis
6.
Anal Bioanal Chem ; 412(18): 4413-4422, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32382969

ABSTRACT

The unicellular photosynthetic organisms known as microalgae are becoming one of the most important models for aquatic system studies. Among them, Chlamydomonas reinhardtii is widely used as a bioindicator of pollution or of different changes in the environment. Numerous pollutants are present in aquatic environments, particularly plastics and nanoplastics. Physiological variations after an environmental change highlight variation in the macromolecular composition of microalgae (proteins, nucleic acids, lipids and carbohydrates). Recently, Fourier transform infrared vibrational spectroscopy has been described as a reliable tool, sensitive and allowing rapid measurement of macromolecular composition of microalgae. Coupled with preprocessing and principal component analysis, it is well adapted to monitoring the effect of environmental stress on biochemical composition. In this study, infrared spectroscopy, combined with multivariate analysis, has been tested first on known environmental stresses such as light intensity variation and nitrogen limitation. Then, this technique has been applied to monitor the interaction and potential impacts of polystyrene nanoparticles on microalgae. The results showed slight variations on protein and carbohydrates bands in the presence of nanoplastics, suggesting that their presence led to modifications in the biochemical composition of the microalgae. To confirm the interaction between microalgae and nanoplastics, visualization by confocal microscopy and cytotoxicity measurement has been carried out. Results showed that polystyrene nanoparticles seemed to adsorb on microalgae surface, leading to a loss of plasma membrane integrity. The resulting chemical modifications, even if moderate, could be detected by infrared spectroscopy' showing that this tool could be very helpful in the understanding of nanoparticle-microalgae interaction mechanisms.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Microalgae/metabolism , Microplastics/metabolism , Polystyrenes/metabolism , Water Pollutants, Chemical/metabolism , Chlamydomonas reinhardtii/chemistry , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/drug effects , Microalgae/chemistry , Microalgae/cytology , Microalgae/drug effects , Microplastics/analysis , Microplastics/toxicity , Polystyrenes/analysis , Polystyrenes/toxicity , Spectroscopy, Fourier Transform Infrared/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Aquat Toxicol ; 217: 105311, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31730931

ABSTRACT

Widespread use of nanoparticles for different applications has diffused their presence in the environment, particularly in water. Many studies have been conducted to evaluate their effects on aquatic organisms. Microalgae are at the base of aquatic trophic chains. These organisms which can be benthic or pelagic, meaning that they can enter into interaction with all kinds of particulate materials whatever their density, and constitute an interesting model study. The purpose of this review was to gather more than sixty studies on microalgae exposure to the different nanoparticles that may be present in the aquatic environment. After a brief description of each type of nanoparticle (metals, silica and plastic) commonly used in ecotoxicological studies, techniques to monitor their properties are presented. Then, different effects on microalgae resulting from interaction with nanoparticles are described as well as the parameters and techniques for monitoring them. The impacts described in the literature are primarily shading, ions release, oxidative stress, adsorption, absorption and disruption of microalgae barriers. Several parameters are proposed to monitor effects such as growth, photosynthesis, membrane integrity, biochemical composition variations and gene expression changes. Finally, in the literature, while different impacts of nanoparticles on microalgae have been described, there is no consensus on evidence of nanomaterial toxicity with regard to microalgae. A parallel comparison of different nanoparticle types appears essential in order to prioritize which factors exert the most influence on toxicity in microalgae cultures: size, nature, surface chemistry, concentration or interaction time.


Subject(s)
Microalgae/drug effects , Nanoparticles/toxicity , Nanotechnology/methods , Cell Membrane/drug effects , Cell Wall/drug effects , Microalgae/genetics , Microalgae/growth & development , Microalgae/ultrastructure
8.
Naturwissenschaften ; 103(7-8): 64, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27392643

ABSTRACT

Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements.


Subject(s)
DNA Transposable Elements/genetics , Genome, Insect/genetics , Phylogeny , Tephritidae/classification , Tephritidae/genetics , Animals , Computer Simulation , Mutation , Terminal Repeat Sequences/genetics
9.
Environ Pollut ; 215: 331-339, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27236494

ABSTRACT

In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 µm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment.


Subject(s)
Fresh Water/chemistry , Microalgae/growth & development , Particle Size , Polyethylene/chemistry , Polymers/chemistry , Polypropylenes/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring , Gene Expression , Geologic Sediments , Microalgae/genetics , Plastics/chemistry , Polysaccharides/chemistry , Water/chemistry , Water Pollution
10.
Genetica ; 143(1): 63-72, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25555688

ABSTRACT

Mariner-like elements (MLEs) are Class II transposons present in all eukaryotic genomes in which MLEs have been searched for. This article reports the detection of MLEs in seven of the main fruit tree aphid species out of eight species studied. Deleted MLE sequences of 916-919 bp were characterized, using the terminal-inverted repeats (TIRs) of mariner elements belonging to the mauritiana Subfamily as primers. All the sequences detected were deleted copies of full-length elements that included the 3'- and 5'-TIRs but displayed internal deletions affecting Mos1 activity. Networks based on the mtDNA cytochrome oxidase subunit-I (CO-I) and MLE sequences were incongruent, suggesting that mutations in transposon sequences had accumulated before speciation of tree aphid species occurred, and that they have been maintained in this species via vertical transmissions. This is the first evidence of the widespread occurrence of MLEs in aphids.


Subject(s)
Aphids/classification , Aphids/genetics , DNA Transposable Elements , Amino Acid Sequence , Animals , Base Sequence , Cluster Analysis , Evolution, Molecular , Genes, Insect , Genome, Insect , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Alignment
11.
Protist ; 165(5): 730-44, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25250954

ABSTRACT

Mariner-like elements (MLEs) are transposable elements able to move in the host genomes by a "cut and paste" mechanism. They have been found in numerous organisms. We succeeded in amplifying complete and truncated MLEs in the marine diatom Amphora acutiuscula. Full-length MLEs of 2,100bp delimited by imperfect Terminal Inverted Repeats revealed an intact Open Reading Frame, suggesting that the MLEs could be active. The DNA binding domain of the corresponding putative transposase could have two Helix-Turn-Helix and a Nuclear Location Site motifs, and its catalytic domain includes a particular triad of aspartic acids DD43D not previously reported. The number of copies was estimated to be 38, including approximately 20 full-length elements. Phylogenetic analysis shows that these peculiar MLEs differ from plant and other stramenopile MLEs and that they could constitute a new sub-family of Tc1-mariner elements.


Subject(s)
DNA Transposable Elements , Diatoms/genetics , Genome , Amino Acid Sequence , Aquatic Organisms/genetics , Cluster Analysis , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transposases/genetics
12.
Gene ; 509(1): 7-15, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22921893

ABSTRACT

Transposable elements (TEs) are present in roughly all genomes. These mobile DNA sequences are able to invade genomes and their impact on genome evolution is substantial. The mobility of TEs can induce the appearance of deleterious mutations, gene disruption and chromosome rearrangements, but transposition activity also has positive aspects and the mutational activities of TEs contribute to the genetic diversity of organisms. This short review aims to give a brief overview of the impact TEs may have on animal and plant genome structure and expression, and the relationship between TEs and the stress response of organisms, including insecticide resistance.


Subject(s)
DNA Transposable Elements , Genome Size , Adaptation, Biological/genetics , Animals , Eukaryota/genetics , Evolution, Molecular , Gene Expression Regulation , Gene Rearrangement , Stress, Physiological/genetics
13.
ScientificWorldJournal ; 2012: 982957, 2012.
Article in English | MEDLINE | ID: mdl-22645501

ABSTRACT

Zinc-supplementation (20 µM) effects on growth, photosynthesis, antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase, catalase), and the expression of phytochelatin synthase gene were investigated in four marine diatoms (Amphora acutiuscula, Nitzschia palea, Amphora coffeaeformis and Entomoneis paludosa). Zn-supplementation reduced the maximum cell density. A linear relationship was found between the evolution of gross photosynthesis and total chlorophyll content. The Zn treatment decreased the electron transport rate except in A. coffeaeformis and in E. paludosa at high irradiance. A linear relationship was found between the efficiency of light to evolve oxygen and the size of the light-harvesting antenna. The external carbonic anhydrase activity was stimulated in Zn-supplemented E. paludosa but was not correlated with an increase of photosynthesis. The total activity of the antioxidant enzymes did not display any clear increase except in ascorbate peroxidase activity in N. palea. The phytochelatin synthase gene was identified in the four diatoms, but its expression was only revealed in N. palea, without a clear difference between control and Zn-supplemented cells. Among the four species, A. paludosa was the most sensitive and A. coffeaeformis, the most tolerant. A. acutiuscula seemed to be under metal starvation, whereas, to survive, only N. palea developed several stress responses.


Subject(s)
Aminoacyltransferases/biosynthesis , Aminoacyltransferases/genetics , Diatoms/metabolism , Zinc/pharmacology , Antioxidants/chemistry , Antioxidants/metabolism , Ascorbate Peroxidases/metabolism , Carbon/chemistry , Carbonic Anhydrases/metabolism , Chlorophyll/chemistry , Diatoms/drug effects , Electrons , Light , Metals/chemistry , Photosynthesis , Polymerase Chain Reaction/methods , Temperature , Zinc/chemistry
14.
J Plant Physiol ; 165(9): 932-41, 2008 Jun 16.
Article in English | MEDLINE | ID: mdl-17928100

ABSTRACT

We report here about the physiological and molecular responses of Populus canadensis (clone Dorskamp) to drought. The stress was applied to young rooted cuttings by PEG 6000 application over 30 days. This stress induces a decrease in predawn leaf water potential. After 10 days of stress, there was a decrease in stomatal conductance and a slight retardation of leaf growth, but the osmotic potential remained constant. Using the differential display technique, we searched for genes differentially expressed in response to drought at this date. Thirty-six differentially expressed leaf cDNAs were detected between stressed and control conditions. Thirty-four cDNAs clones were successfully cloned and 23 were found to share high identity with Arabidopsis thaliana and Populus trichocarpa genes. The transcriptional regulation of 21 genes was examined by reverse RNA dot blot, confirming an increase in expression for 16 of them after 10 days of treatment. Among these 16 genes, most of them are involved in a different cellular metabolic pathway. These differentially expressed genes are also involved and/or regulated by other treatments such as salt, withholding water or auxin application. The maintenance of growth observed during the first 10 days of the stress period could be due to the regulation of these genes and can be a common response between herbaceous plants and trees.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Polyethylene Glycols/pharmacology , Populus/genetics , Populus/physiology , Arabidopsis/drug effects , Arabidopsis/genetics , Clone Cells , Droughts , Genes, Plant , Osmosis/drug effects , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Stomata/drug effects , Plant Stomata/physiology , Populus/drug effects , RNA, Plant/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Stress, Physiological/drug effects , Stress, Physiological/genetics , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...