Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36500542

ABSTRACT

We propose a physico-chemical approach for theharacterization of the conservation condition of yarns from a Flemish tapestry of the sixteenth century. The aging effect on the yarns' performance was evaluated by comparison with commercial materials. Water uptake experiments highlighted the aptitude of yarns toward water sorption and their increased hydrophilicity upon aging. Thermogravimetric analysis can be considered a fast approach for the fiber identification and assessment on the material life-time. The dynamic mechanical analysis provided direct evidence on the yarns, conservation state and their performance under different mechanical stresses. The proposed characterization path can be relevant for stating the condition of the tapestry and for designing a conservation protocol for the preservation of the artwork.


Subject(s)
Water , Stress, Mechanical
2.
Int J Biol Macromol ; 222(Pt A): 228-238, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36155783

ABSTRACT

Keratin/alginate hydrogels filled with halloysite nanotubes (HNTs) have been tested for the protective coating of human hair. Preliminary studies have been conducted on the aqueous colloidal systems and the corresponding hydrogels obtained by using Ca2+ ions as crosslinkers. Firstly, we have investigated the colloidal properties of keratin/alginate/HNTs dispersions to explore the specific interactions occurring between the biomacromolecules and the nanotubes. Then, the rheological properties of the hydrogels have been studied highlighting that the keratin/alginate interactions and the subsequent addition of HNTs facilitate the biopolymer crosslinking. Finally, human hair samples have been treated with the hydrogel systems by the dipping procedure. The protection efficiency of the hydrogels has been evaluated by studying the tensile properties of hair fibers exposed to UV irradiation. In conclusion, keratin/alginate hydrogel filled with halloysite represents a promising formulation for hair protective treatments due to the peculiar structural and rheological characteristics.


Subject(s)
Alginates , Nanotubes , Humans , Clay/chemistry , Alginates/chemistry , Hydrogels/chemistry , Keratins , Nanotubes/chemistry , Hair
SELECTION OF CITATIONS
SEARCH DETAIL
...