Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32967827

ABSTRACT

Ultrafast demagnetization of rare-earth metals is distinct from that of 3d ferromagnets, as rare-earth magnetism is dominated by localized 4f electrons that cannot be directly excited by an optical laser pulse. Their demagnetization must involve excitation of magnons, driven either through exchange coupling between the 5d6s-itinerant and 4f-localized electrons or by coupling of 4f spins to lattice excitations. Here, we disentangle the ultrafast dynamics of 5d6s and 4f magnetic moments in terbium metal by time-resolved photoemission spectroscopy. We show that the demagnetization time of the Tb 4f magnetic moments of 400 fs is set by 4f spin-lattice coupling. This is experimentally evidenced by a comparison to ferromagnetic gadolinium and supported by orbital-resolved spin dynamics simulations. Our findings establish coupling of the 4f spins to the lattice via the orbital momentum as an essential mechanism driving magnetization dynamics via ultrafast magnon generation in technically relevant materials with strong magnetic anisotropy.

2.
Phys Rev Lett ; 123(3): 036406, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31386447

ABSTRACT

Magnetotransport constitutes a useful probe to understand the interplay between electronic band topology and magnetism in spintronic devices. A recent theory of Lu and Shen [Phys. Rev. Lett. 112, 146601 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.146601] on magnetically doped topological insulators predicts that quantum corrections Δκ to the temperature dependence of conductivity can change sign across the Curie transition. This phenomenon has been attributed to a suppression of the Berry phase of the topological surface states at the Fermi level, caused by a magnetic energy gap. Here, we demonstrate experimentally that Δκ can reverse its sign even when the Berry phase at the Fermi level remains unchanged. The contradictory behavior to theory predictions is resolved by extending the model by Lu and Shen to a nonmonotonic temperature scaling of the inelastic scattering length showing a turning point at the Curie transition.

3.
Nat Commun ; 9(1): 1035, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29515124

ABSTRACT

"The technical support from SLAC Accelerator Directorate, Technology Innovation Directorate, LCLS laser division and Test Facility Division is gratefully acknowledged. We thank S.P. Weathersby, R.K. Jobe, D. McCormick, A. Mitra, S. Carron and J. Corbett for their invaluable help and technical assistance. Research at SLAC was supported through the SIMES Institute which like the LCLS and SSRL user facilities is funded by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-76SF00515. The UED work was performed at SLAC MeV-UED, which is supported in part by the DOE BES SUF Division Accelerator & Detector R&D program, the LCLS Facility, and SLAC under contract Nos. DE-AC02-05-CH11231 and DE-AC02-76SF00515. Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515."and"Work at BNL was supported by DOE BES Materials Science and Engineering Division under Contract No: DE-AC02-98CH10886. J.C. would like to acknowledge the support from National Science Foundation Grant No. 1207252. E.E.F. would like to acknowledge support from the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award No. DE-SC0003678."This has been corrected in both the PDF and HTML versions of the Article.

4.
Nat Commun ; 9(1): 388, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29374151

ABSTRACT

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

5.
Nat Commun ; 6: 8262, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26355196

ABSTRACT

The Heisenberg-Dirac intra-atomic exchange coupling is responsible for the formation of the atomic spin moment and thus the strongest interaction in magnetism. Therefore, it is generally assumed that intra-atomic exchange leads to a quasi-instantaneous aligning process in the magnetic moment dynamics of spins in separate, on-site atomic orbitals. Following ultrashort optical excitation of gadolinium metal, we concurrently record in photoemission the 4f magnetic linear dichroism and 5d exchange splitting. Their dynamics differ by one order of magnitude, with decay constants of 14 versus 0.8 ps, respectively. Spin dynamics simulations based on an orbital-resolved Heisenberg Hamiltonian combined with first-principles calculations explain the particular dynamics of 5d and 4f spin moments well, and corroborate that the 5d exchange splitting traces closely the 5d spin-moment dynamics. Thus gadolinium shows disparate dynamics of the localized 4f and the itinerant 5d spin moments, demonstrating a breakdown of their intra-atomic exchange alignment on a picosecond timescale.

6.
Phys Rev Lett ; 107(20): 207201, 2011 Nov 11.
Article in English | MEDLINE | ID: mdl-22181762

ABSTRACT

The spin-flip (SF) Eliashberg function is calculated from first principles for ferromagnetic Ni to accurately establish the contribution of Elliott-Yafet electron-phonon SF scattering to Ni's femtosecond laser-driven demagnetization. This is used to compute the SF probability and demagnetization rate for laser-created thermalized as well as nonequilibrium electron distributions. Increased SF probabilities are found for thermalized electrons, but the induced demagnetization rate is extremely small. A larger demagnetization rate is obtained for nonequilibrium electron distributions, but its contribution is too small to account for femtosecond demagnetization.

7.
Phys Rev Lett ; 105(2): 027203, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20867735

ABSTRACT

We propose a semiclassical model for femtosecond laser-induced demagnetization due to spin-polarized excited electron diffusion in the superdiffusive regime. Our approach treats the finite elapsed time and transport in space between multiple electronic collisions exactly, as well as the presence of several metal films in the sample. Solving the derived transport equation numerically we show that this mechanism accounts for the experimentally observed demagnetization within 200 fs in Ni, without the need to invoke any angular momentum dissipation channel.

8.
J Phys Condens Matter ; 19(36): 365203, 2007 Sep 12.
Article in English | MEDLINE | ID: mdl-21694149

ABSTRACT

The spin-mixing conductance of a thin ferromagnetic layer attached epitaxially to two semi-infinite non-magnetic metallic leads is formulated in terms of non-equilibrium Green's functions. The spin-mixing conductance is obtained as a response of the spin torque acting on the ferromagnet with respect to the spin accumulation in one of the leads, while the spin torque is defined as a time derivative of the spin magnetic moment. The equivalence of the derived formula with a previous expression of the Landauer-Büttiker scattering theory is sketched and an implementation within the ab initio tight-binding linear muffin-tin orbital method is briefly described. Applications are made for metallic Co- and Ni-based slabs embedded between Cu(111) leads and for half-metallic Co(2)MnSi films sandwiched by Cr(001) leads. The calculated results throw serious doubts on the general validity of two features: fast convergence of the spin-mixing conductance with increasing thickness of the magnetic layer and negligible values of the imaginary part of the spin-mixing conductance as compared to the real part.

SELECTION OF CITATIONS
SEARCH DETAIL
...