Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent J (Basel) ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38920890

ABSTRACT

BACKGROUND: Amelogenesis imperfecta is a hereditary disorder affecting dental enamel. Among its phenotypes, hypocalcified AI is characterized by mineral deficiency, leading to tissue wear and, consequently, dental sensitivity. Excessive fluoride intake (through drinking water, fluoride supplements, toothpaste, or by ingesting products such as pesticides or insecticides) can lead to a condition known as dental fluorosis, which manifests as stains and teeth discoloration affecting their structure. Our recent studies have shown that extracts from Colombian native plants, Ilex guayusa and Piper marginatum, deposit mineral ions such as phosphate and orthophosphate into the dental enamel structure; however, it is unknown whether these extracts produce toxic effects on the dental pulp. OBJECTIVE: To assess cytotoxicity effects on human dental pulp stem cells (hDPSCs) exposed to extracts isolated from I. guayusa and P. marginatum and, hence, their safety for clinical use. METHODS: Raman spectroscopy, fluorescence microscopy, and flow cytometry techniques were employed. For Raman spectroscopy, hDPSCs were seeded onto nanobiochips designed to provide surface-enhanced Raman spectroscopy (SERS effect), which enhances their Raman signal by several orders of magnitude. After eight days in culture, I. guayusa and P. marginatum extracts at different concentrations (10, 50, and 100 ppm) were added. Raman measurements were performed at 0, 12, and 24 h following extract application. Fluorescence microscopy was conducted using an OLIMPUS fv1000 microscope, a live-dead assay was performed using a kit employing a BD FACS Canto TM II flow cytometer, and data analysis was determined using a FlowJo program. RESULTS: The Raman spectroscopy results showed spectra consistent with viable cells. These findings were corroborated using fluorescence microscopy and flow cytometry techniques, confirming high cellular viability. CONCLUSIONS: The analyzed extracts exhibited low cytotoxicity, suggesting that they could be safely applied on enamel for remineralization purposes. The use of nanobiochips for SERS effect improved the cell viability assessment.

2.
Paediatr Anaesth ; 33(6): 427-434, 2023 06.
Article in English | MEDLINE | ID: mdl-36719267

ABSTRACT

Although the most important primary local inflammatory response factor to intubation is not yet clear, it is known that it may be directly attributed to the presence of trauma during intubation or the response of oral bacterial flora present in the trachea. It is known that prolonged intubation is associated with worse outcomes, but other underlying systemic issues, such as sepsis and trauma, are also associated with this result. Likewise, patients who require advanced airway management and excessive manipulation are more likely to experience complications. There are various inflammatory mediators that are generated during orotracheal intubation, many of which can be considered targets for therapies to help reduce inflammation caused by intubation. However, there is little evidence on the management of the inflammatory response induced by orotracheal intubation in pediatric patients. Therefore, the aim of this narrative review is to highlight the intubation associated complications that can arise from poorly controlled inflammation in intubated pediatric patients, review the proposed pathophysiology behind this, and discuss the current treatments that exist. Finally, taking into account the discussion on pathophysiology, we describe the current therapies being developed and future directions that can be taken in order to create more treatment options within this patient population.


Subject(s)
Intubation, Intratracheal , Trachea , Humans , Child , Retrospective Studies , Intubation, Intratracheal/adverse effects , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...