Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Primatol ; : e23654, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38922738

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health Organization in March 2020. Since then, viral spread from humans to animals has occurred worldwide. Nonhuman primates (NHPs) have been found to be susceptible to reverse-zoonosis transmission of SARS-CoV-2, but initial research suggested that platyrrhine primates are less susceptible than catarrhine primates. Here we report the natural SARS-CoV-2 infection of a common woolly monkey (Lagothrix lagothricha) from a wildlife rehabilitation center in Ecuador. The course of the disease, the eventual death of the specimen, and the pathological findings are described. Our results show the susceptibility of a new platyrrhine species to SARS-CoV-2 and provide evidence for the first time of a COVID-19-associated death in a naturally infected NHP. The putative route of transmission from humans, and implications for captive NHPs management, are also discussed. Given that common woolly monkeys are at risk of extinction in Ecuador, further understanding of the potential threat of SARS-CoV-2 to their health should be a conservation priority. A One Health approach is the best way to protect NHPs from a new virus in the same way that we would protect the human population.

2.
Microbiol Spectr ; 12(4): e0274123, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38364080

ABSTRACT

Human populations can be affected in unpredictable ways by the emergence and spread of zoonotic diseases. The COVID-19 (coronavirus disease of 2019) pandemic was a reminder of how devastating these events can be if left unchecked. However, once they have spread globally, the impact of these diseases when entering non-exposed wildlife populations is unknown. The current study reports the infection of brown-headed spider monkeys (Ateles fusciceps) at a wildlife rescue center in Ecuador. Four monkeys were hospitalized, and all tested positive for SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) by RT-qPCR (Quantitative Reverse Transcription PCR). Fecal samples (n = 12) from monkeys at the rescue center also tested positive; three zookeepers responsible for feeding and deworming the monkeys also tested positive, suggesting human-animal transmission. Whole genome sequencing identified most samples' omicron clade 22B BA.5 lineage. These findings highlight the threat posed by an emerging zoonotic disease in wildlife species and the importance of preventing spillover and spillback events during epidemic or pandemic events.IMPORTANCEAlthough COVID-19 (coronavirus disease of 2019) has been primarily contained in humans through widespread vaccination, the impact and incidence of SARS-CoV-2 (Severe acute respiratory syndrome coronavirus) and its transmission and epidemiology in wildlife may need to be addressed. In some natural environments, the proximity of animals to humans is difficult to control, creating perfect scenarios where susceptible wildlife can acquire the virus from humans. In these places, it is essential to understand how transmission can occur and to develop protocols to prevent infection. This study reports the infection of brown-headed spider monkeys with SARS-CoV-2, a red-listed monkey species, at a wildlife recovery center in Ecuador. This study reports the infection of brown-headed spider monkeys with SARS-CoV-2, indicating the potential for transmission between humans and wildlife primates and the importance of preventing such events in the future.


Subject(s)
Atelinae , COVID-19 , Animals , Humans , Animals, Wild , COVID-19/epidemiology , COVID-19/veterinary , Ecuador/epidemiology , SARS-CoV-2/genetics , Zoonoses/epidemiology , South America , Pandemics
3.
Front Cell Infect Microbiol ; 12: 951383, 2022.
Article in English | MEDLINE | ID: mdl-36164552

ABSTRACT

SARS-CoV-2 reinfection is defined as a new infection with a different virus variant in an individual who has already recovered from a previous episode of COVID-19. The first case of reinfection in the world was described in August 2020, since then, reinfections have increased over time and their incidence has fluctuated with specific SARS-CoV-2 variant waves. Initially, reinfections were estimated to represent less than 1% of total COVID-19 infections. With the advent of the Omicron variant, reinfections became more frequent, representing up to 10% of cases (based on data from developed countries). The frequency of reinfections in Latin America has been scarcely reported. The current study shows that in Ecuador, the frequency of reinfections has increased 10-fold following the introduction of Omicron, after 22 months of surveillance in a single center of COVID-19 diagnostics. Suspected reinfections were identified retrospectively from a database of RT-qPCR-positive patients. Cases were confirmed by sequencing viral genomes from the first and second infections using the ONT MinION platform. Monthly surveillance showed that the main incidence peaks of reinfections were reached within four to five months, coinciding with the increase of COVID-19 cases in the country, suggesting that the emergence of reinfections is related to higher exposure to the virus during outbreaks. This study performed the longest monitoring of SARS-CoV-2 reinfections, showing an occurrence at regular intervals of 4-5 months and confirming a greater propensity of Omicron to cause reinfections.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Ecuador/epidemiology , Humans , Reinfection , Retrospective Studies , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...