Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 27(5): 1373-82, 2011.
Article in English | MEDLINE | ID: mdl-21695809

ABSTRACT

The presence of purines and pyrimidines bases, nucleosides, and nucleotides in the culture medium has shown to differently affect the growth of a Chinese hamster ovary (CHO) cell line producing the secreted form of the human placental alkaline phosphatase enzyme (SEAP; Carvalhal et al., Biotech Prog. 2003;19:69-83). CHO, BHK, as well as Sf9 cell growth was clearly reduced in the presence of purines but was not affected by pyrimidines at the concentrations tested. The knowledge about the mechanisms by which nucleotides exert their effect when present outside the cells remains very incomplete. The catabolism of both extracellular purines and pyrimidines was followed during the culture of CHO cells. Purines/pyrimidines nucleotides added at a concentration of 1 mM to the culture medium decreased to negligible concentrations in the first 2 days. Purine and pyrimidine catabolism originated only purinic and pyrimidic end-products, respectively. The comparison between AMP catabolism in serum-free cultures (CHO cells expressing Factor VII and Sf9 cells) and in cultures containing serum (CHO cells expressing SEAP and BHK cells expressing Factor VII) showed that AMP extracellular catabolism is mediated by both cells and enzymes present in the serum. This work shows that the quantification of purines and pyrimidines in the culture medium is essential in animal cell culture optimization. When using AMP addition as a chemical cell growth strategy for recombinant protein production improvement, AMP extracellular concentration monitoring allows the optimization of the multiple AMP addition strategy for a prolonged cell culture duration with high specific productivity.


Subject(s)
Purine Nucleotides/metabolism , Pyrimidine Nucleotides/metabolism , Adenosine Monophosphate/metabolism , Animals , Cell Line , Cell-Free System , Chromatography, High Pressure Liquid , Cricetinae , Culture Media
2.
Biotechnol Prog ; 21(1): 99-105, 2005.
Article in English | MEDLINE | ID: mdl-15903246

ABSTRACT

Previously it was reported that supplementation of insect cell culture with Lonomia obliqua hemolymph could extend culture longevity (Maranga et al. Biotechnol. Prog. 2003, 19, 58-63). In this work the anti-apoptotic properties of this hemolymph in Spodoptera frugiperda (Sf-9) cell culture were investigated. The presence or absence of apoptotic cells was characterized by light microscopy, flow cytometry, and agarose gel electrophoresis. Hemolymph was fractionated by several ion exchange and gel filtration chromatographic steps for identification of the compounds responsible for this effect. Fractions exhibiting a potent anti-apoptotic effect were isolated and tested in cell culture. A protein of about 51 kDa was identified, isolated, and tested for apoptosis inhibition. Addition of this purified protein to Sf-9 cultures was able to prevent apoptosis induced by nutrient depletion as well as by potent apoptosis chemical inducers such as Actinomycin D. This work confirms that the enhanced culture longevity obtained by supplementation with L. obliqua hemolymph is due to the presence of potent anti-apoptotic factors.


Subject(s)
Apoptosis/drug effects , Hemolymph/chemistry , Moths/chemistry , Proteins , Animals , Apoptosis/physiology , Cell Culture Techniques/methods , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Chromatography, Gel/methods , Chromatography, Ion Exchange/methods , Culture Media/pharmacology , DNA/chemistry , Dactinomycin/pharmacology , Proteins/chemistry , Proteins/isolation & purification , Proteins/pharmacology , Spodoptera/cytology , Spodoptera/metabolism , Time Factors
3.
Biotechnol Prog ; 19(1): 69-83, 2003.
Article in English | MEDLINE | ID: mdl-12573009

ABSTRACT

Arresting cell growth and thus decreasing cell division potentially lessens the chance for genetic drift in the cell population; this would be of utmost importance for the consistent production of biopharmaceuticals during long periods. The drawback of the addition of well-known synchronizing agents, such as chemotherapeutics, is that they cause a disproportionate accumulation of cellular constituents, leading to cell death. The use of compounds that are naturally synthesized by the cell, as is the case of nucleotides, nucleosides, and bases (Nt/Ns/B), is shown in this work to be a promising tool. The addition of purines and pyrimidines was tested using a CHO cell line producing the secreted form of the human placental alkaline phosphatase enzyme (SEAP). From the chemical alternatives tested, AMP was the most promising compound for protein production improvement; it reduced cell growth and maintained the culture with high cell viability for long periods, while increasing SEAP specific productivity 3-fold. The use of CHO and BHK mammalian cells producing Factor VII and the use of a insect cell line (Sf9) showed that the effect of AMP addition seems to be independent of the r-protein and cell line. With the addition of AMP, accumulation of cells at the S phase was accompanied by an increase of the protein specific productivity. Addition of known synchronizing drugs (aphidicolin and doxorubicin) and application of environmental cell growth arrest strategies (depletion of nutrients and byproduct accumulation) showed also to effectively arrest CHO cell growth. A careful look onto cell cycle distribution in the different scenarios created, shows whether it is important to consider r-protein expression dependency upon cell cycle in process optimization and operation strategies.


Subject(s)
Alkaline Phosphatase/biosynthesis , CHO Cells/drug effects , CHO Cells/physiology , Purines/pharmacology , Pyrimidines/pharmacology , Animals , CHO Cells/cytology , Cell Culture Techniques/methods , Cell Division/drug effects , Cell Division/physiology , Coenzymes/pharmacology , Cricetinae , Humans , Nucleosides/pharmacology , Nucleotides/pharmacology , Quality Control , Recombinant Proteins/biosynthesis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...