Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(14)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38157558

ABSTRACT

TbxPr1-xAl2are ferrimagnetic materials exhibiting magnetocaloric effect that have gained considerable attention due to their potential use as an alternative in refrigeration, magnetic sensors and in information storage technology. Here using the mean field approach numerical simulations were conducted forx= 0.1, 0.2, 0.3, 0.4, 0.5, and 0.75, to analyze selected physical properties, such as x-ray and neutron powder diffraction, magnetization and heat capacity. The simulations successfully reproduced the experimental data providing a comprehensive characterization and improved understanding of this family of compound.

2.
Nat Mater ; 5(10): 802-4, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16951675

ABSTRACT

The magnetocaloric effect (MCE) is the basis for magnetic refrigeration, and can replace conventional gas compression technology due to its superior efficiency and environment friendliness. MCE materials must exhibit a large temperature variation in response to an adiabatic magnetic-field variation and a large isothermal entropic effect is also expected. In this respect, MnAs shows the colossal MCE, but the effect appears under high pressures. In this work, we report on the properties of Mn(1-x)Fe(x)As that exhibit the colossal effect at ambient pressure. The MCE peak varies from 285 K to 310 K depending on the Fe concentration. Although a large thermal hysteresis is observed, the colossal effect at ambient pressure brings layered magnetic regenerators with huge refrigerating power closer to practical applications around room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...