Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 298: 110590, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32771148

ABSTRACT

Peruvianin-I is a cysteine peptidase (EC 3.4.22) purified from Thevetia peruviana. Previous studies have shown that it is the only germin-like protein (GLP) with proteolytic activity described so far. In this work, the X-ray crystal structure of peruvianin-I was determined to a resolution of 2.15 Å (PDB accession number: 6ORM) and its specific location was evaluated by different assays. Its overall structure shows an arrangement composed of a homohexamer (a trimer of dimers) where each monomer exhibits a typical ß-barrel fold and two glycosylation sites (Asn55 and Asn144). Analysis of its active site confirmed the absence of essential amino acids for typical oxalate oxidase activity of GLPs. Details of the active site and molecular docking results, using a specific cysteine peptidase inhibitor (iodoacetamide), were used to discuss a plausible mechanism for proteolytic activity of peruvianin-I. Histological analyses showed that T. peruviana has articulated anastomosing laticifers, i.e., rows of cells which merge to form continuous tubes throughout its green organs. Moreover, peruvianin-I was detected exclusively in the latex. Because latex peptidases have been described as defensive molecules against insects, we hypothesize that peruvianin-I contributes to protect T. peruviana plants against herbivory.


Subject(s)
Glycoproteins/chemistry , Plant Proteins/chemistry , Thevetia/chemistry , Thevetia/metabolism , Catalytic Domain , Molecular Docking Simulation , Protein Structure, Quaternary , Proteolysis
2.
Int J Biol Macromol ; 105(Pt 1): 1051-1061, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28754622

ABSTRACT

Germin-like proteins (GLPs) have been identified in several plant tissues. However, only one work describes GLP in latex fluids. Therefore, the goal of this study was to investigate GLPs in latex and get new insights concerning the structural and functional aspects of these proteins. Two complete sequences with high identity (>50%) with other GLPs, termed CpGLP1 and CpGLP2, were obtained and consecutively presented 216 and 206 amino acid residues, corresponding to molecular masses of 22.7 and 21.7kDa, pI 6.8 and 6.5. The three-dimensional models revealed overall folding similar to those reported for other plant GLPs. Both deduced sequences were grouped into the GER 2 subfamily. Molecular docking studies indicated a putative binding site consisting of three highly conserved histidines and a glutamate residue, which interacted with oxalate. This interaction was later supported by enzymatic assays. Superoxide dismutase (common activity in GLPs) was not detected for CpGLP1 and CpGLP2 by zymogram. The two proteins were detected in the latex, but not in non-germinated or germinated seeds and calli. These results give additional support that germin-like proteins are broadly distributed in plants and they are tissue-specific. This particularity deserves further studies to better understand their functions in latex.


Subject(s)
Calotropis/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Latex/chemistry , Oxidoreductases/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Amino Acid Sequence , Glycoproteins/isolation & purification , Models, Molecular , Plant Proteins/isolation & purification , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...