Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater ; 18(5)2023 08 11.
Article in English | MEDLINE | ID: mdl-37531962

ABSTRACT

In the past decade, there has been significant progress in 3D printing research for tissue engineering (TE) using biomaterial inks made from natural and synthetic compounds. These constructs can aid in the regeneration process after tissue loss or injury, but achieving high shape fidelity is a challenge as it affects the construct's physical and biological performance with cells. In parallel with the growth of 3D bioprinting approaches, some marine-origin polymers have been studied due to their biocompatibility, biodegradability, low immunogenicity, and similarities to human extracellular matrix components, making them an excellent alternative to land mammal-origin polymers with reduced disease transmission risk and ethical concerns. In this research, collagen from shark skin, chitosan from squid pens, and fucoidan from brown algae were effectively blended for the manufacturing of an adequate biomaterial ink to achieve a printable, reproducible material with a high shape fidelity and reticulated using four different approaches (phosphate-buffered saline, cell culture medium, 6% CaCl2, and 5 mM Genipin). Materials characterization was composed by filament collapse, fusion behavior, swelling behavior, and rheological and compressive tests, which demonstrated favorable shape fidelity resulting in a stable structure without deformations, and interesting shear recovery properties around the 80% mark. Additionally, live/dead assays were conducted in order to assess the cell viability of an immortalized human mesenchymal stem cell line, seeded directly on the 3D printed constructs, which showed over 90% viable cells. Overall, the Roswell Park Memorial Institute cell culture medium promoted the adequate crosslinking of this biopolymer blend to serve the TE approach, taking advantage of its capacity to hamper pH decrease coming from the acidic biomaterial ink. While the crosslinking occurs, the pH can be easily monitored by the presence of the indicator phenol red in the cell culture medium, which reduces costs and time.


Subject(s)
Biocompatible Materials , Bioprinting , Animals , Humans , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry , Ink , Polymers , Tissue Engineering/methods , Printing, Three-Dimensional , Bioprinting/methods , Mammals
2.
Int J Biol Macromol ; 241: 124510, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37080412

ABSTRACT

Cartilage repair after a trauma or a degenerative disease like osteoarthritis (OA) continues to be a big challenge in current medicine due to the limited self-regenerative capacity of the articular cartilage tissues. To overcome the current limitations, tissue engineering and regenerative medicine (TERM) and adjacent areas have focused their efforts on new therapeutical procedures and materials capable of restoring normal tissue functionalities through polymeric scaffolding and stem cell engineering approaches. For this, the sustainable exploration of marine origin materials has emerged in the last years as a natural alternative to mammal sources, benefiting from their biological properties (e.g., biocompatibility, biodegradability, no toxicity, among others) for the development of several types of scaffolds. In this study, marine collagen(jCOL)-chitosan(sCHT)-fucoidan(aFUC)/chondroitin sulfate(aCS) were cryo-processed (-20 °C, -80 °C, and -196 °C) and a chemical-free crosslinking approach was explored to establish cohesive and stable cryogel materials. The cryogels were intensively characterized to assess their oscillatory behavior, thermal structural stability, thixotropic properties (around 45 % for the best formulations), injectability, and surface structural organization. Additionally, the cryogels demonstrate an interesting microenvironment in in vitro studies using human adipose-derived stem cells (hASCs), supporting their viability and proliferation. In both physic-chemical and in vitro studies, the systems that contain fucoidan in their formulations, i.e., C1 (jCOL, sCHT, aFUC) and C3 (jCOL, sCHT, aFUC, aCS), submitted at -80 °C, are those that demonstrated most promising results for future application in articular cartilage tissues.


Subject(s)
Cartilage, Articular , Chitosan , Animals , Humans , Biocompatible Materials/pharmacology , Biocompatible Materials/metabolism , Tissue Engineering/methods , Chondroitin Sulfates/chemistry , Chitosan/chemistry , Tissue Scaffolds/chemistry , Cryogels/chemistry , Cartilage, Articular/metabolism , Collagen/metabolism , Mammals
3.
Gels ; 9(3)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36975696

ABSTRACT

The self-repair capacity of human tissue is limited, motivating the arising of tissue engineering (TE) in building temporary scaffolds that envisage the regeneration of human tissues, including articular cartilage. However, despite the large number of preclinical data available, current therapies are not yet capable of fully restoring the entire healthy structure and function on this tissue when significantly damaged. For this reason, new biomaterial approaches are needed, and the present work proposes the development and characterization of innovative polymeric membranes formed by blending marine origin polymers, in a chemical free cross-linking approach, as biomaterials for tissue regeneration. The results confirmed the production of polyelectrolyte complexes molded as membranes, with structural stability resulting from natural intermolecular interactions between the marine biopolymers collagen, chitosan and fucoidan. Furthermore, the polymeric membranes presented adequate swelling ability without compromising cohesiveness (between 300 and 600%), appropriate surface properties, revealing mechanical properties similar to native articular cartilage. From the different formulations studied, the ones performing better were the ones produced with 3 % shark collagen, 3% chitosan and 10% fucoidan, as well as with 5% jellyfish collagen, 3% shark collagen, 3% chitosan and 10% fucoidan. Overall, the novel marine polymeric membranes demonstrated to have promising chemical, and physical properties for tissue engineering approaches, namely as thin biomaterial that can be applied over the damaged articular cartilage aiming its regeneration.

4.
Biomater Adv ; 137: 212843, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929272

ABSTRACT

In the recent decade, marine origin products have been growingly studied as building blocks complying with the constant demand of the biomedical sector regarding the development of new devices for Tissue Engineering and Regenerative Medicine (TERM). In this work, several combinations of marine collagen-chitosan-fucoidan hydrogel were formed using a newly developed eco-friendly compressive and absorption methodology to produce hydrogels (CAMPH), which consists of compacting the biopolymers solution while removing the excess of water. The hydrogel formulations were prepared by blending solutions of 5% collagen from jellyfish and/or 3% collagen from blue shark skin, with solutions of 3% chitosan from squid pens and solutions of 10% fucoidan from brown algae, at different ratios. The biopolymer physico-chemical characterization comprised Amino Acid analysis, ATR-FTIR, CD, SDS-PAGE, ICP, XRD, and the results suggested the shark/jellyfish collagen(s) conserved the triple helical structure and had similarities with type I and type II collagen, respectively. The studied collagens also contain a denaturation temperature of around 30-32 °C and a molecular weight between 120 and 125 kDa. Additionally, the hydrogel properties were determined by rheology, water uptake ability, degradation rate, and SEM, and the results showed that all formulations had interesting mechanical (strong viscoelastic character) and structural stability properties, with a significant positive highlight in the formulation of H3 (blending all biopolymers, i.e., 5% collagen from jellyfish, 3% collagen from skin shark, 3% chitosan and 10% of fucoidan) in the degradation test, that shows a mass loss around 18% over the 30 days, while the H1 and H2, present a mass loss of around 35% and 44%, respectively. Additionally, the in vitro cellular assessments using chondrocyte cells (ATDC5) in encapsulated state revealed, for all hydrogel formulations, a non-cytotoxic behavior. Furthermore, Live/Dead assay and Phalloidin/DAPI staining, to assess the cytoskeletal organization, proved that the hydrogels can provide a suitable microenvironment for cell adhesion, viability, and proliferation, after being encapsulated. Overall, the results show that all marine collagen (jellyfish/shark)-chitosan-fucoidan hydrogel formulations provide a good structural architecture and microenvironment, highlighting the H3 biomaterial due to containing more polymers in their composition, making it suitable for biomedical articular cartilage therapies.


Subject(s)
Cartilage, Articular , Chitosan , Biocompatible Materials/pharmacology , Cartilage, Articular/chemistry , Chitosan/chemistry , Collagen/pharmacology , Hydrogels/pharmacology , Tissue Engineering/methods , Water/metabolism
5.
Polymers (Basel) ; 14(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35631910

ABSTRACT

Marine origin polymers represent a sustainable and natural alternative to mammal counterparts regarding the biomedical application due to their similarities with proteins and polysaccharides present in extracellular matrix (ECM) in humans and can reduce the risks associated with zoonosis and overcoming social- and religious-related constraints. In particular, collagen-based biomaterials have been widely explored in tissue engineering scaffolding applications, where cryogels are of particular interest as low temperature avoids protein denaturation. However, little is known about the influence of the parameters regarding their behavior, i.e., how they can influence each other toward improving their physical and chemical properties. Factorial design of experiments (DoE) and response surface methodology (RSM) emerge as tools to overcome these difficulties, which are statistical tools to find the most influential parameter and optimize processes. In this work, we hypothesized that a design of experiments (DoE) model would be able to support the optimization of the collagen-chitosan-fucoidan cryogel manufacturing. Therefore, the parameters temperature (A), collagen concentration (B), and fucoidan concentration (C) were carefully considered to be applied to the Box-Behnken design (three factors and three levels). Data obtained on rheological oscillatory measurements, as well as on the evaluation of antioxidant concentration and adenosine triphosphate (ATP) concentration, showed that fucoidan concentration could significantly influence collagen-chitosan-fucoidan cryogel formation, creating a stable internal polymeric network promoted by ionic crosslinking bonds. Additionally, the effect of temperature significantly contributed to rheological oscillatory properties. Overall, the condition that allowed us to have better results, from an optimization point of view according to the DoE, were the gels produced at -80 °C and composed of 5% of collagen, 3% of chitosan, and 10% fucoidan. Therefore, the proposed DoE model was considered suitable for predicting the best parameter combinations needed to develop these cryogels.

6.
Biomater Sci ; 9(20): 6718-6736, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34494053

ABSTRACT

The body's self-repair capacity is limited, including injuries on articular cartilage zones. Over the past few decades, tissue engineering and regenerative medicine (TERM) has focused its studies on the development of natural biomaterials for clinical applications aiming to overcome this self-therapeutic bottleneck. This review focuses on the development of these biomaterials using compounds and materials from marine sources that are able to be produced in a sustainable way, as an alternative to mammal sources (e.g., collagens) and benefiting from their biological properties, such as biocompatibility, low antigenicity, biodegradability, among others. The structure and composition of the new biomaterials require mimicking the native extracellular matrix (ECM) of articular cartilage tissue. To design an ideal temporary tissue-scaffold, it needs to provide a suitable environment for cell growth (cell attachment, proliferation, and differentiation), towards the regeneration of the damaged tissues. Overall, the purpose of this review is to summarize various marine sources to be used in the development of different tissue-scaffolds with the capability to sustain cells envisaging cartilage tissue engineering, analysing the systems displaying more promising performance, while pointing out current limitations and steps to be given in the near future.


Subject(s)
Cartilage, Articular , Tissue Engineering , Animals , Biocompatible Materials , Regenerative Medicine , Tissue Scaffolds
7.
Biomed Mater ; 15(5): 055030, 2020 09 12.
Article in English | MEDLINE | ID: mdl-32570224

ABSTRACT

The combination of marine origin biopolymers for tissue engineering (TE) applications is of high interest, due to their similarities with the proteins and polysaccharides present in the extracellular matrix of different human tissues. This manuscript reports on innovative collagen-chitosan-fucoidan cryogels formed by the simultaneous blending of these three marine polymers in a chemical-free crosslinking approach. The physicochemical characterization of marine biopolymers comprised FTIR, amino acid analysis, circular dichroism and SDS-PAGE, and suggested that the jellyfish collagen used in the cryogels was not denatured (preserved the triple helical structure) and had similarities with type II collagen. The chitosan presented a high deacetylation degree (90.1%) that can strongly influence the polymer physicochemical properties and biomaterial formation. By its turn, rheology, and SEM studies confirmed that these novel cryogels present interesting properties for TE purposes, such as effective blending of biopolymers without visible material segregation, mechanical stability (strong viscoelastic character), as well as adequate porosity to support cell proliferation and exchange of nutrients and waste products. Additionally, in vitro cellular assessments of all cryogel formulations revealed a non-cytotoxic behavior. The MTS test, live/dead assay and cell morphology assessment (phalloidin DAPI) showed that cryogels can provide a proper microenvironment for cell culturing, supporting cell viability and promoting cell proliferation. Overall, the obtained results suggest that the novel collagen-chitosan-fucoidan cryogels herein presented are promising scaffolds envisaging tissue engineering purposes, as both acellular biomaterials or cell-laden cryogels.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Collagen/chemistry , Cryogels/chemistry , Polymers/chemistry , Polysaccharides/chemistry , Tissue Engineering/methods , Amino Acids/chemistry , Animals , Biopolymers/chemistry , Cell Adhesion , Cell Line , Cell Proliferation , Cell Survival , Cells, Cultured , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Gelatin/chemistry , In Vitro Techniques , Magnetic Resonance Spectroscopy , Materials Testing , Mice , Microscopy, Electron, Scanning , Molecular Weight , Phalloidine/chemistry , Porosity , Rheology , Scyphozoa , Spectroscopy, Fourier Transform Infrared , Tissue Scaffolds/chemistry
8.
J Biomater Sci Polym Ed ; 31(1): 20-37, 2020 01.
Article in English | MEDLINE | ID: mdl-31526303

ABSTRACT

Atlantic cod is processed industrially for food purposes, with several by-products being directed to animal feed and other ends. Looking particularly into swim bladders, the extraction of collagen can be a valuable strategy for by-product valorization, explored in the present work for the first time. Collagen was extracted using acetic acid (ASCsb) and pepsin (PSCsb) with yields of 5.72% (w/w) and 11.14% (w/w), respectively. SDS-PAGE profile showed that the extracts were compatible with type I collagen. FTIR, CD and XRD results suggest that the PSCsb structure underwent partial denaturation, with microDSC showing a band at 54 °C probably corresponding to a melting process, while ASCsb structure remained intact, with preserved triple helix and a denaturation temperature of 29.6 °C. Amino acid composition indicates that the total content of proline-like amino acids was 148/1000 residues for ASCsb and 141/1000 residues for PSCsb, with a hydroxylation degree of about 37%. The extracts exhibited a typical shear thinning behavior, interesting property regarding their further processing toward the development of biomaterials. In this regard, assessment of metabolic activity of human fibroblast cells cultured in the presence of collagen extracts with concentrations up to 3 mg/mL revealed the absence of cytotoxic behavior. Collagen extracts obtained from Atlantic cod swim bladders shown attractive properties regarding their use in cosmetic or biomedical applications.


Subject(s)
Acetic Acid/chemistry , Biocompatible Materials/isolation & purification , Collagen/isolation & purification , Gadus morhua/anatomy & histology , Pepsin A/metabolism , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Biocompatible Materials/toxicity , Cell Line , Collagen/chemistry , Collagen/metabolism , Collagen/toxicity , Humans , Molecular Weight , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...