Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Res ; 233: 116435, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37331556

ABSTRACT

In this study, samples of bromeliad Tillandsia usneoides (n = 70) were transplanted and exposed for 15 and 45 days in 35 outdoor residential areas in Brumadinho (Minas Gerais state, Brazil) after one of the most severe mining dam collapses in the world. Trace elements aluminum (Al), arsenic (As), chromium (Cr), copper (Cu), iron (Fe), mercury (Hg), manganese (Mn), nickel (Ni) and zinc (Zn) were quantified by atomic absorption spectrometry. Scanning electron microscope generated surface images of T. usneoides fragments and particulate matter (PM2.5, PM10 and PM > 10). Aluminum, Fe and Mn stood out from the other elements reflecting the regional geological background. Median concentrations in mg kg-1 increased (p < 0.05) between 15 and 45 days for Cr (0.75), Cu (1.23), Fe (474) and Mn (38.1), while Hg (0.18) was higher at 15 days. The exposed-to-control ratio revealed that As and Hg increased 18.1 and 9.4-fold, respectively, not showing a pattern associated only with the most impacted sites. The PM analysis points to a possible influence of the prevailing west wind on the increase of total particles, PM2.5 and PM10 in transplant sites located to the east. Brazilian public health dataset revealed increase in cases of some cardiovascular and respiratory diseases/symptoms in Brumadinho in the year of the dam collapse (1.38 cases per 1000 inhabitants), while Belo Horizonte capital and its metropolitan region recorded 0.97 and 0.37 cases, respectively. Although many studies have been carried out to assess the consequences of the tailings dam failure, until now atmospheric pollution had not yet been evaluated. Furthermore, based on our exploratory analysis of human health dataset, epidemiological studies are required to verify possible risk factors associated with the increase in hospital admissions in the study area.


Subject(s)
Air Pollutants , Mercury , Metals, Heavy , Tillandsia , Trace Elements , Humans , Trace Elements/analysis , Particulate Matter/analysis , Tillandsia/chemistry , Brazil , Biological Monitoring , Public Health , Aluminum , Air Pollutants/analysis , Environmental Monitoring/methods , Chromium/analysis , Mercury/analysis , Manganese/analysis , Metals, Heavy/analysis
2.
Environ Res ; 214(Pt 4): 114157, 2022 11.
Article in English | MEDLINE | ID: mdl-36027956

ABSTRACT

In this study, we investigated factors that influence the differences in exposure of perfluoroalkyl acids (PFAAs) from eight species of Antarctic seabirds, including Pygoscelis penguins, Stercorarius maccormicki, and Macronectes giganteus. We analyzed the relationship between foraging ecology (based on δ13C, δ15N, and δ34S values) and PFAAs accumulated in eggs and breast feathers. Ten out of 15 targeted PFAAs were detected in eggs compared to eight in feathers. Mean ∑PFAA concentrations in feathers ranged from 0.47 in P. antarcticus to 17.4 ng/g dry weight (dw) in S. maccormicki. In eggs, ∑PFAA concentrations ranged from 3.51 in P. adeliae to 117 ng/g dw in S. maccormicki. The highest concentrations of most PFAAs were found in trans-equatorial migrators such as S. maccormicki, probably due their high trophic position and higher concentrations of PFAAs in the Northern Hemisphere compared to the Southern Hemisphere. Based on stable isotopes correlations, our results suggest that the trophic position (δ15N) and the foraging area (δ13C and δ34S) influence PFAAs concentrations in Antarctic seabirds. Our results point to the possibility that long-distance migratory birds may have as bio-vectors in the transport of pollutants, including PFCAs, in Antarctic environments, although this must be further confirmed in future studies using a mass balanced approach, such as extractable organofluorine (EOF).


Subject(s)
Environmental Pollutants , Fluorocarbons , Spheniscidae , Animals , Antarctic Regions , Environmental Monitoring/methods , Feathers/chemistry , Fluorocarbons/analysis
3.
J Food Sci Technol ; 58(11): 4217-4224, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34538905

ABSTRACT

Anthocyanins are pigments of plant origin responsible for most blue, purple and all shades of red found in flowers, fruits and some stems and roots of plants, besides comprising a class of potent antioxidant phenolic compounds. Due to the relevance of anthocyanins this work aims to encapsulate anthocyanin extracted from the wine lees through the Solution Enhanced Dispersion by Supercritical Fluids (SEDS) technique and to evaluate the thermal stability of encapsulated versus non-encapsulated anthocyanin. The highest encapsulation efficiency obtained was approximately 66%. Submicron size particles ranging from 0.22 to 0.30 µm were obtained and they were free of residual organic solvent. In relation to the thermal stability, it was verified that the particles degraded about six times less than the non-encapsulated sample, which allows numerous applications since one of the barriers of anthocyanin use is its sensitivity to high temperatures.

4.
Environ Pollut ; 289: 117817, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34333268

ABSTRACT

In several countries, flower import regulations are restricted to food security, by establishing maximum residue limits (MRL) for pesticides in flower-based food products and biosafety, in order to limit the circulation of vectors, pests and exotic species across borders. In this context, the lack of limits on pesticides in flower-products for ornamental purposes can influence the pesticide overuse in production areas, as well as the transfer of contaminated products between countries. Therefore, the purpose of this review was to discuss possible adverse effects on human and environmental health of pesticides used in floriculture, evaluating regulations on the use of these pesticides in the main importing and flower-producing countries. This review included 92 documents. The use of 201 compounds was identified by interviews and analytical measurements. Among them, 93 are banned by the European Union (EU), although 46.3 % of these compounds have been identified in samples from European countries. Latin American countries have a large number of scientific publications on pesticides in flower production (n = 51), while the EU and China have less studies (n = 24) and the United States and Japan have no studies. Regarding adverse health effects, poorer neurobehavioral development, reproductive disorders, congenital malformations and genotoxicity have been reported for residents of flower production areas and workers throughout the flower production cycle. Studies including water samples show overuse of pesticides, while environmental impacts are related to water and air contamination, soil degradation and adverse effects on the reproduction and development of non-target organisms. This review points out that the absence of MRL for non-edible flowers can be crucial for the trade of contaminated products across borders, including pesticides banned in importing countries. Furthermore, setting limits on flowers could reduce the use of pesticides in producing countries.


Subject(s)
Pesticide Residues , Pesticides , Environmental Exposure , Environmental Pollution , Flowers/chemistry , Food Contamination/analysis , Humans , Pesticide Residues/analysis , Pesticides/analysis , Soil
5.
Environ Res ; 193: 110526, 2021 02.
Article in English | MEDLINE | ID: mdl-33249035

ABSTRACT

On January 2019, the B1 iron ore tailings' dam collapsed in Brumadinho, Brazil, being one of the worst mining-related disasters, with 270 human deaths (11 of them still missing) and 12.106 m3 of tailings released to the environment. The tailings devastated the Córrego do Feijão brook and reached the adjacent Paraopeba River, the region's main watercourse and a major tributary of the São Francisco basin. Although physicochemical parameters of the river were strongly impacted, and acute toxicological effects have been reported from exposure experiments, contamination of aquatic biota had not yet been assessed. Therefore, the aim of this study was to evaluate contamination by trace elements (As, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in sediment, fish and macrophytes along the Paraopeba River, upstream and downstream from the dam failure site, during the dry and wet season. With the exception of Cd and Hg, all elements in sediment samples had lower median concentrations downstream. An inverse pattern was observed for the aquatic biota, with significant higher concentrations of Fe, Mn, Ni and Zn in fishes, and increased concentrations of most elements in macrophytes, indicating an increase in element bioavailability. A significant seasonal variation was observed with increased concentrations of As (dry season) and Pb (wet season) in fish samples, with the same trend occurring in macrophytes. Concentrations of potentially toxic elements in fish samples in wet weight (Cr: 1.80 ± 1.31 mg kg-1, Hg: 0.21 ± 0.11 mg kg-1 and Pb: 0.79 ± 0.80 mg kg-1) were lower than those reported before the disaster. Furthermore, As and Pb concentrations exceeded the safety threshold for fish consumption in 3% and 41% of samples, respectively, representing a matter of concern for public health.


Subject(s)
Metals, Heavy , Structure Collapse , Trace Elements , Water Pollutants, Chemical , Animals , Brazil , Environmental Monitoring , Fishes , Geologic Sediments , Humans , Metals, Heavy/analysis , Seasons , Trace Elements/analysis , Water Pollutants, Chemical/analysis
6.
J Trace Elem Med Biol ; 62: 126620, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688265

ABSTRACT

BACKGROUND: We investigated Se levels along the Tapajós River basin - which is an important tributary of the Amazon River - and the possible antagonistic effect of Se in Hg availability. This is the first study to investigate Se transfer from abiotic to biotic compartments and along the food chain in aquatic ecosystems of the Amazon basin. METHODS: Se concentrations were measured in superficial sediment (n = 29), plankton (n = 28) and fishes (n = 121) along two stretches of the Tapajós River basin (Tapup/mi and Taplow), comprising approximately 500 km with different hydrological characteristics. RESULTS: Se concentrations in sediment were significantly higher in the Taplow (345-664 µg kg-1) than in the Tapup/mi (60-424 µg kg-1). The seasonal flooding of the Amazon River probably helps to carry selenium-rich sediment to the Tapajós mouth (Taplow stretch). We suggest that Se in sediment could decrease the bioavailability of Hg resulting in lower MeHg concentrations in fish, as observed in the Taplow (45-934 µg kg-1). Sediment and plankton were positively correlated in relation to their Se concentrations (r = 0.62; p = 0.001) suggesting that sediment can possibly be the main source of Se to plankton. Our data indicate Se uptake by primary consumers, as noted in phytoplankton levels. The decrease of Se concentrations along the food chain was also noteworthy. CONCLUSION: This work elucidates some aspects of Se biogeochemistry in the Amazon basin and shows its importance regarding Hg cycles in aquatic ecosystems.


Subject(s)
Mercury/analysis , Methylmercury Compounds/analysis , Selenium/analysis , Animals , Ecosystem , Environmental Monitoring , Fishes , Rivers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...