Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 116: 104929, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38871206

ABSTRACT

Primordial germ cells (PGCs) constitute an important cell lineage that directly impacts genetic dissemination and species conservation through the creation of cryobanks. In order to advance the field of animal genetic cryopreservation, this work aimed to recover intact PGCs cryopreserved in embryonic tissues during the segmentation phase for subsequent in vitro maintenance, using the yellow-tailed tetra (Astyanax altiparanae) as a model organism. For this, a total of 202 embryos were distributed in two experiments. In the first experiment, embryos in the segmentation phase were dissociated, and isolated PGCs were maintained in vitro. They were visualized using gfp-Pm-ddx4 3'UTR labeling. The second experiment aimed to vitrify PGCs using 3 cryoprotective agents or CPAs (dimethyl sulfoxide, ethylene glycol, and 1,2 propanediol) at 3 molarities (2, 3, and 4 M). The toxicity, somatic cell viability, and recovery of intact PGCs were evaluated. After cryopreservation and thawing, 2 M ethylene glycol produced intact PGCs and somatic cells (44 ± 11.52 % and 42.35 ± 0.33 %, respectively) post-thaw. The recovery of PGCs from frozen embryonic tissues was not possible without the use of CPAs. Thus, the vitrification of PGCs from an important developmental model and Neotropical species such as A. altiparanae was achieved, and the process of isolating and maintaining PGCs in a culture medium was successful. Therefore, to ensure the maintenance of genetic diversity, PGCs obtained during embryonic development in the segmentation phase between 25 and 28 somites were stored through vitrification for future applications in the reconstitution of species through germinal chimerism.

2.
Fish Physiol Biochem ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060079

ABSTRACT

Primordial germ cells (PGCs) are embryonic pluripotent cells that can differentiate into spermatogonia and oogonia, and therefore, PGCs are a genetic source for germplasm conservation through cryobanking and the generation of germline chimeras. The knowledge of PGC migration routes is essential for transplantation studies. In this work, the mRNA synthesized from the ddx4 3'UTR sequence of Pseudopimelodus mangurus, in fusion with gfp or dsred, was microinjected into zygotes of three neotropical species (P. mangurus, Astyanax altiparanae, and Prochilodus lineatus) for PGC labeling. Visualization of labeled PGCs was achieved by fluorescence microscopy during embryonic development. In addition, ddx4 and dnd1 expressions were evaluated during embryonic development, larvae, and adult tissues of P. mangurus, to validate their use as a PGC marker. As a result, the effective identification of presumptive PGCs was obtained. DsRed-positive PGC of P. mangurus was observed in the hatching stage, GFP-positive PGC of A. altiparanae in the gastrula stage, and GFP-positive PGCs from P. lineatus were identified at the segmentation stage, with representative labeling percentages of 29% and 16% in A. altiparanae and P. lineatus, respectively. The expression of ddx4 and dnd1 of P. mangurus confirmed the specificity of these genes in germ cells. These results point to the functionality of the P. mangurus ddx4 3'UTR sequence as a PGC marker, demonstrating that PGC labeling was more efficient in A. altiparanae and P. lineatus. The procedures used to identify PGCs in P. mangurus consolidate the first step for generating germinal chimeras as a conservation action of P. mangurus.

3.
Int J Dev Biol ; 67(2): 39-48, 2023.
Article in English | MEDLINE | ID: mdl-37548016

ABSTRACT

Biotechniques, including surrogate propagation derived from primordial germ cell (PGC) transplantation, are valuable tools for the reconstitution of endangered fish species. Although promising, there are no previous studies reporting such approaches using neotropical fish species. The aim of this study was to establish germline chimeras in neotropical fish by using the yellowtail tetra Astyanax altiparanae as a model species of the order Characiformes. Germline chimeras were obtained after transplantation of PGCs cultivated under different conditions: saline medium and supplemented with DMEM, amino acids, vitamins, glutamine, pyruvate, and fetal bovine serum, and subsequently transplanted into A. altiparanae triploids and triploid hybrids from the cross between A. altiparanae (♀) and A. fasciatus (♂). The results indicate ectopic migration in host embryos after transplantation of PGCs cultivated in saline medium. However, PGCs cultivated in supplemented medium migrated to the region of the gonadal ridge in 4.5% of triploid and 19.3% in triploid hybrid. In addition, the higher expression of dnd1, ddx4 and dazl genes was found in PGCs cultivated in supplemented culture medium. This indicates that the culture medium influences the maintenance and development of the cultivated cells. The expression levels of nanos and cxcr4b (related to the differentiation and migration of PGCs) were decreased in PGCs from the supplemented culture medium, supporting the results of ectopic migration. This is the first study to report the transplantation of PGCs to obtain germline chimera in neotropical species. The establishment of micromanipulation procedures in a model neotropical species will open new insights for the conservation of endangered species.


Subject(s)
Characiformes , Triploidy , Animals , Germ Cells , Cell Differentiation , Micromanipulation
4.
Zygote ; 30(6): 773-780, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35929453

ABSTRACT

Primordial germ cells transplantation is a unique approach for conservation and reconstitution of endangered fish species. This study aimed to establish techniques to culture dechorionated embryos in different incubation systems and also to determine anaesthetic concentration for fish recipients in the larval stage for subsequent primordial germ cell transplantation. Intact and dechorionated embryos were divided into three incubation systems: (1) a control group with manual replacement of the solution; (2) a closed environment with high oxygen with manual replacement of the solution; and (3) constant solution recirculation. This combination resulted in six treatments. For the evaluation of anaesthetics for larvae, the concentrations evaluated were 19.5 mM, 24.4 mM, 29.3 mM, and 34.2 mM of 2-phenoxyethanol. Anaesthesia concentration and recovery at different stages were evaluated. For transplantation, primordial germ cells of Astyanax altiparanae were transplanted into anaesthetised larvae (1 dph) of Prochilodus lineatus. Better results were obtained in the recirculation system for dechorionated embryos of P. lineatus for hatching (54.18%) and normal morphology (50.06%). The 2-phenoxyethanol anaesthetic with a dose of 29.3 mM resulted in shorter induction times, in addition to the recovery time between 5 and 10 min. By using this anaesthetic concentration at transplantation, GFP-positive cells were seen in two recipients, but the cells did not proliferate. This study established an effective incubation system for the development of the dechorionated embryo and determined an effective anaesthetic concentration for P. lineatus larvae. In addition, micromanipulation and transplantation of primordial germ cells in neotropical species were conducted for the first time.


Subject(s)
Anesthetics , Characiformes , Animals , Germ Cells , Embryo, Mammalian , Larva , Anesthetics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...