Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38929747

ABSTRACT

Type 2 diabetes mellitus (T2DM) stands as a prevalent global public health issue caused by deficiencies in the action of insulin and/or insulin production. In the liver, insulin plays an important role by inhibiting hepatic glucose production and stimulating glycogen storage, thereby contributing to blood glucose regulation. Kaempferitrin (KP) and kaempferol (KM), flavonoids found in Bauhinia forficata, exhibit insulin-mimetic properties, showing promise in managing T2DM. In this study, we aimed to assess the potential of these compounds in modulating the insulin signaling pathway and/or glucose metabolism. Cell viability assays confirmed the non-cytotoxic nature of both compounds toward HepG2 cells at the concentrations and times evaluated. Theoretical molecular docking studies revealed that KM had the best docking pose with the IR ß subunit when compared to the KP. Moreover, Langmuir monolayer evaluation indicated molecular incorporation for both KM and KP. Specifically, KM exhibited the capability to increase AKT phosphorylation, a key kinase in insulin signaling, regardless of insulin receptor (IR) activation. Notably, KM showed an additional synergistic effect with insulin in activating AKT. In conclusion, our findings suggest the potential of KM as a promising compound for stimulating AKT activation, thereby influencing energy metabolism in T2DM.

2.
J Exp Zool A Ecol Integr Physiol ; 337(9-10): 1039-1052, 2022 12.
Article in English | MEDLINE | ID: mdl-36127811

ABSTRACT

Interspecific variation in metabolic rates may be associated with climate, habitat structure, and resource availability. Despite a strong link between ecology and physiology, there is a dearth in the understanding of how the costs of body maintenance change during ecological transitions. We focused on an ecologically diverse group of neotropical lizards (Tropidurinae) to investigate whether and how resting metabolic rate (RMR) evolved under divergent micro- and macrohabitat conditions. Using a phylogenetic framework, we tested whether species from hot and dry habitats had lower RMRs in relation to those from cooler and mesic habitats, and investigated whether microhabitat usage had an effect over body mass-adjusted RMRs. Our results suggest that RMRs are not phylogenetically structured in Tropidurinae. We found no correlation between metabolism, precipitation, and microhabitat usage. Species from warmer habitats had lower RMR compared to those from cooler habitats, supporting a mechanism of negative compensation in metabolic responses to temperature. Ectotherms from warmer habitats can limit energetic demand and expenditure through reduced RMR, whereas those from cooler habitats may sustain activity despite thermal constraints via increased RMR. Our work highlights the role of temperature in shaping metabolic responses in lizards, giving additional support to the notion that physiology and ecological contexts are intertwined.


Subject(s)
Lizards , Animals , Lizards/physiology , Basal Metabolism , Temperature , Ecosystem , Climate
3.
Article in English | MEDLINE | ID: mdl-34562624

ABSTRACT

Ambush-foraging snakes that ingest large meals might undergo several months without eating when they use the internal reserves to support the energetic costs of living. Then, morphological and physiological processes might be orchestrated during the transition from fasting to the postprandial period to rapidly use the energetic stores while the metabolic rate is elevated in response to food intake. To understand the patterns of substrates deposition after feeding, we accessed the morphological and biochemical response in Boa constrictor snakes after two months of fasting and six days after feeding. We followed the plasma levels of glucose, total proteins, and total lipids, and we performed the stereological ultrastructural analysis of the liver and the proximal region of the intestine to quantify glycogen granules and lipid droplets. In the same tissues and stomach, we measured the activity of the enzyme fructose-1,6-biphosphatase (FBPase1) involved in the gluconeogenic pathway, and we measured pyruvate kinase (PK) and lactate dehydrogenase (LDH) enzymatic activities involved in the anaerobic pathway in the liver. Briefly, our results indicated an increase in boas' plasma glucose one day after meal intake compared to unfed snakes. The hepatic glycogen reserves were continuously restored within days after feeding. Also, the enzymes involved in the energetic pathways increased activity six days after feeding in the liver. These findings suggest a quick restoring pattern of energetic stores during the postprandial period.


Subject(s)
Boidae/physiology , Animals , Blood Glucose/metabolism , Blood Proteins/metabolism , Boidae/blood , Eating/physiology , Energy Metabolism , Feeding Behavior/physiology , Gluconeogenesis , Homeostasis , Intestines/metabolism , Intestines/ultrastructure , Lipids/blood , Liver/metabolism , Liver/ultrastructure , Liver Glycogen/metabolism , Microscopy, Electron, Transmission , Postprandial Period/physiology
4.
J Exp Biol ; 224(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34622285

ABSTRACT

Snakes are interesting examples of taxa that can overcome energy metabolism challenges, as many species can endure long periods without feeding, and their eventual meals are of reasonably large sizes, thus exhibiting dual extreme adaptations. Consequently, metabolic rate increases considerably to attend to the energetic demand of digestion, absorption and protein synthesis. These animals should be adapted to transition from these two opposite states of energy fairly quickly, and therefore we investigated mitochondrial function plasticity in these states. Herein, we compared liver mitochondrial bioenergetics of the boid snake Boa constrictor during fasting and after meal intake. We fasted the snakes for 60 days, and then we fed a subgroup with 30% of their body size and evaluated their maximum postprandial response. We measured liver respiration rates from permeabilized tissue and isolated mitochondria. From isolated mitochondria, we also measured Ca2+ retention capacity and redox status. Mitochondrial respiration rates were maximized after feeding, reaching an approximately 60% increase from fasting levels when energized with complex I-linked substrates. Interestingly, fasting and fed snakes exhibited similar respiratory control ratios and citrate synthase activity. Furthermore, we found no differences in Ca2+ retention capacity, indicating no increase in susceptibility to mitochondrial permeability transition, and no changes in mitochondrial redox state, although fed animals exhibited increases in the release of H2O2. Thus, we conclude that liver mitochondria from B. constrictor snakes increase respiration rates during the postprandial period and quickly improve the bioenergetic capacity without compromising redox balance.


Subject(s)
Boidae , Animals , Energy Metabolism , Hydrogen Peroxide , Liver , Mitochondria
5.
Acta Zool, v. 00, p. 1-8, set. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4786

ABSTRACT

In Squamate reptiles, vitellogenesis in females is marked by an increase in the number and size of follicles, leading to an increase in aerobic metabolism to support the rising energy demand during reproductive activity. Male gametes are smaller than female gametes, and spermiogenesis requires less energy than vitellogenesis. This investigation compares the relationship between aerobic metabolism and reproductive effort in male and female viviparous Tomodon dorsatus snakes. We evaluated the influence of the males' and females' reproductive stages, along with the masses of follicles and testicles, on their aerobic metabolic rate. Our findings show that females have higher maintenance cost of pregnancy than metabolic costs of vitellogenesis. In males, we found no evidence of the reproductive effort influencing aerobic metabolic rates. In T. dorsatus, females have a long period of development and high fecundity. Therefore, the metabolic costs of vitellogenesis represent a critical component in the reproductive effort. On the other hand, males of T. dorsatus maintain a similar mass of gonads throughout the year with constant energy demand. These results reflect the difference in reproductive efforts between females and males of T. dorsatus.

6.
Acta Zool, v. 00, 1-8, set. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3952

ABSTRACT

In Squamate reptiles, vitellogenesis in females is marked by an increase in the number and size of follicles, leading to an increase in aerobic metabolism to support the rising energy demand during reproductive activity. Male gametes are smaller than female gametes, and spermiogenesis requires less energy than vitellogenesis. This investigation compares the relationship between aerobic metabolism and reproductive effort in male and female viviparous Tomodon dorsatus snakes. We evaluated the influence of the males' and females' reproductive stages, along with the masses of follicles and testicles, on their aerobic metabolic rate. Our findings show that females have higher maintenance cost of pregnancy than metabolic costs of vitellogenesis. In males, we found no evidence of the reproductive effort influencing aerobic metabolic rates. In T. dorsatus, females have a long period of development and high fecundity. Therefore, the metabolic costs of vitellogenesis represent a critical component in the reproductive effort. On the other hand, males of T. dorsatus maintain a similar mass of gonads throughout the year with constant energy demand. These results reflect the difference in reproductive efforts between females and males of T. dorsatus.

7.
Integr Zool ; 15(1): 40-54, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31149773

ABSTRACT

It is well known that environmental temperature influences several biological functions of ectotherms, notably in amphibians. The high permeability of anuran skin, associated with the effect of elevated environmental temperature, potentiates the dehydration process and this combination may restrict locomotor performance. Thoropa taophora is an endemic species from the Atlantic Rainforest whose tadpoles are semiterrestrial and predominantly diurnal, and are found in rocky seashores where they are exposed to sea spray and high temperatures. In this study we investigated how temperature and salinity conditions affect the locomotor performance in Thoropa taophora tadpoles. We also assessed how different osmotic concentrations affect the activity of the metabolic pathways that support muscle function. We measured the sprint speed of tadpoles of various sizes at different temperatures and salinities in the field. We also measured the activity of the enzymes pyruvate kinase (PK), lactate dehydrogenase (LDH) and citrate synthase (CS) in different temperatures and osmotic concentrations, and calculated the thermal sensitivity and the activity constants for each osmolality. Our results showed that, in general, sprint speed decreased with increasing temperature and salinity. However, whereas the effect of increased salinity was similar in smaller and larger tadpoles, increased temperature had a higher negative impact on sprint speed of larger tadpoles, thus indicating low thermal sensitivity of small tadpoles. PK and LDH thermal sensitivities and LDH constant of activity decreased as the osmolality increased. In conclusion, the locomotor capacity of tadpoles was decreased by temperature and salinity, which may be related to a decrease in anaerobic metabolism both in terms of sensitivity and total energy turnover through enzymatic activity. We discuss the ecological consequences, including the potential impacts on predator escape behavior promoted by changes in metabolism and locomotor performance in an early stage of development of this species.


Subject(s)
Anura/physiology , Hot Temperature , Motor Activity/drug effects , Salinity , Sodium Chloride/pharmacology , Animals , Anura/growth & development , Dose-Response Relationship, Drug , Larva/drug effects , Larva/physiology , Motor Activity/physiology , Sodium Chloride/administration & dosage , Stress, Physiological
8.
Zoolog Sci ; 35(4): 373-381, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30079829

ABSTRACT

Feeding specialization is a recurrent issue in the evolution of snakes and is sometimes associated to morphological and/or behavioral adaptations that improve snake performance to exploit a particular food type. Despite its importance for animal fitness, the role of physiological traits has been much less studied than morphological and behavioral traits in the evolution of feeding specialization in snakes. In this context, the energetic cost of post-prandial period is an important physiological factor due to the remarkable effect on the snake energy budget. We collected data on post-prandial metabolic rate (SDA) in five species of pit vipers from the genus Bothrops with different degrees of mammal feeding specialization to test the hypothesis that feeding specialist species have lower energy costs during the digestion of their regular food item when compared to species with a more generalist diet. Our results support this hypothesis and suggest that ontogenetic changes in diet can be accompanied by changes in energy cost of the digestion process.


Subject(s)
Bothrops/physiology , Energy Metabolism/physiology , Postprandial Period/physiology , Aging , Animals , Bothrops/classification , Species Specificity
9.
J Comp Physiol B ; 188(2): 315-323, 2018 03.
Article in English | MEDLINE | ID: mdl-28986632

ABSTRACT

The current proposal about the variation of standard metabolic rates (SMR) in snakes predicts that SMR is influenced by the feeding frequency (frequent or infrequent feeders). However, feeding frequency in snakes is poorly studied and hard to quantify under natural conditions. Alternatively, foraging strategy was studied for a large number of species and is usually related to the feeding frequency. In this work, we performed a meta-analysis on the SMR of compiled data from 74 species of snakes obtained from the literature and five more different species of lanceheads (genus Bothrops), after categorization according to the foraging mode (ambush or active foraging) and regarding their phylogenetic history. We tested the hypothesis that foraging mode (FM) is a determinant factor on the interspecific variation of SMR despite the phylogenetic relationship among species. We demonstrated that FM predicted SMR, but there is also a partial phylogenetic structuration of SMR in snakes. We also detected that evolution rates of SMR in active foragers seem to be higher than ambush-hunting snakes. We suggested that foraging mode has a major effect over the evolution of SMR in snakes, which could represent an ecophysiological co-adaptation, since ambush hunters (with low feeding rates) present a lower maintenance energetic cost (SMR) when compared to active foragers. The higher SMR evolution rates for active foraging snakes could be related to a higher heterogeny in the degree of activity during hunting by active foragers when compared to ambush-hunting snakes.


Subject(s)
Basal Metabolism/genetics , Bothrops/physiology , Feeding Behavior/physiology , Phylogeny , Animals , Species Specificity
10.
Zool Sci, v. 35, n. 4, p. 373-381, aug. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2542

ABSTRACT

Feeding specialization is a recurrent issue in the evolution of snakes and is sometimes associated to morphological and/or behavioral adaptations that improve snake performance to exploit a particular food type. Despite its importance for animal fitness, the role of physiological traits has been much less studied than morphological and behavioral traits in the evolution of feeding specialization in snakes. In this context, the energetic cost of post-prandial period is an important physiological factor due to the remarkable effect on the snake energy budget. We collected data on post-prandial metabolic rate (SDA) in five species of pit vipers from the genus Bothrops with different degrees of mammal feeding specialization to test the hypothesis that feeding specialist species have lower energy costs during the digestion of their regular food item when compared to species with a more generalist diet. Our results support this hypothesis and suggest that ontogenetic changes in diet can be accompanied by changes in energy cost of the digestion process.

11.
J Comp Physiol B-Biochem Syst Environ Physiol, v. 188, n. 2, p. 315-323, mar. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2409

ABSTRACT

The current proposal about the variation of standard metabolic rates (SMR) in snakes predicts that SMR is influenced by the feeding frequency (frequent or infrequent feeders). However, feeding frequency in snakes is poorly studied and hard to quantify under natural conditions. Alternatively, foraging strategy was studied for a large number of species and is usually related to the feeding frequency. In this work, we performed a meta-analysis on the SMR of compiled data from 74 species of snakes obtained from the literature and five more different species of lanceheads (genus Bothrops), after categorization according to the foraging mode (ambush or active foraging) and regarding their phylogenetic history. We tested the hypothesis that foraging mode (FM) is a determinant factor on the interspecific variation of SMR despite the phylogenetic relationship among species. We demonstrated that FM predicted SMR, but there is also a partial phylogenetic structuration of SMR in snakes. We also detected that evolution rates of SMR in active foragers seem to be higher than ambush-hunting snakes. We suggested that foraging mode has a major effect over the evolution of SMR in snakes, which could represent an ecophysiological co-adaptation, since ambush hunters (with low feeding rates) present a lower maintenance energetic cost (SMR) when compared to active foragers. The higher SMR evolution rates for active foraging snakes could be related to a higher heterogeny in the degree of activity during hunting by active foragers when compared to ambush-hunting snakes.

12.
Zool. Sci. ; 35(4): p. 373-81, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15415

ABSTRACT

Feeding specialization is a recurrent issue in the evolution of snakes and is sometimes associated to morphological and/or behavioral adaptations that improve snake performance to exploit a particular food type. Despite its importance for animal fitness, the role of physiological traits has been much less studied than morphological and behavioral traits in the evolution of feeding specialization in snakes. In this context, the energetic cost of post-prandial period is an important physiological factor due to the remarkable effect on the snake energy budget. We collected data on post-prandial metabolic rate (SDA) in five species of pit vipers from the genus Bothrops with different degrees of mammal feeding specialization to test the hypothesis that feeding specialist species have lower energy costs during the digestion of their regular food item when compared to species with a more generalist diet. Our results support this hypothesis and suggest that ontogenetic changes in diet can be accompanied by changes in energy cost of the digestion process.

13.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14912

ABSTRACT

The current proposal about the variation of standard metabolic rates (SMR) in snakes predicts that SMR is influenced by the feeding frequency (frequent or infrequent feeders). However, feeding frequency in snakes is poorly studied and hard to quantify under natural conditions. Alternatively, foraging strategy was studied for a large number of species and is usually related to the feeding frequency. In this work, we performed a meta-analysis on the SMR of compiled data from 74 species of snakes obtained from the literature and five more different species of lanceheads (genus Bothrops), after categorization according to the foraging mode (ambush or active foraging) and regarding their phylogenetic history. We tested the hypothesis that foraging mode (FM) is a determinant factor on the interspecific variation of SMR despite the phylogenetic relationship among species. We demonstrated that FM predicted SMR, but there is also a partial phylogenetic structuration of SMR in snakes. We also detected that evolution rates of SMR in active foragers seem to be higher than ambush-hunting snakes. We suggested that foraging mode has a major effect over the evolution of SMR in snakes, which could represent an ecophysiological co-adaptation, since ambush hunters (with low feeding rates) present a lower maintenance energetic cost (SMR) when compared to active foragers. The higher SMR evolution rates for active foraging snakes could be related to a higher heterogeny in the degree of activity during hunting by active foragers when compared to ambush-hunting snakes.

14.
J Exp Biol ; 219(Pt 11): 1649-58, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26994181

ABSTRACT

Anti-predatory behaviour evolves under the strong action of natural selection because the success of individuals avoiding predation essentially defines their fitness. Choice of anti-predatory strategies is defined by prey characteristics as well as environmental temperature. An additional dimension often relegated in this multilevel equation is the ontogenetic component. In the tegu Salvator merianae, adults run away from predators at high temperatures but prefer fighting when it is cold, whereas juveniles exhibit the same flight strategy within a wide thermal range. Here, we integrate physiology and morphology to understand ontogenetic variation in the temperature-dependent shift of anti-predatory behaviour in these lizards. We compiled data for body shape and size, and quantified enzyme activity in hindlimb and head muscles, testing the hypothesis that morphophysiological models explain ontogenetic variation in behavioural associations. Our prediction is that juveniles exhibit body shape and muscle biochemistry that enhance flight strategies. We identified biochemical differences between muscles mainly in the LDH:CS ratio, whereby hindlimb muscles were more glycolytic than the jaw musculature. Juveniles, which often use evasive strategies to avoid predation, have more glycolytic hindlimb muscles and are much smaller when compared with adults 1-2 years old. Ontogenetic differences in body shape were identified but marginally contributed to behavioural variation between juvenile and adult tegus, and variation in anti-predatory behaviour in these lizards resides mainly in associations between body size and muscle biochemistry. Our results are discussed in the ecological context of predator avoidance by individuals differing in body size living at temperature-variable environments, where restrictions imposed by the cold could be compensated by specific phenotypes.


Subject(s)
Body Size , Lizards/anatomy & histology , Lizards/physiology , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/chemistry , Predatory Behavior/physiology , Aging/physiology , Animals , Linear Models , Quantitative Trait, Heritable
16.
Physiol Biochem Zool ; 82(6): 680-5, 2009.
Article in English | MEDLINE | ID: mdl-19758090

ABSTRACT

Aggression is an important component of behavior in many animals and may be crucial to providing individuals with a competitive advantage when resources are limited. Although much is known about the effects of catecholamines and hormones on aggression, relatively few studies have examined the effects of physical performance on aggression. Here we use a large, sexually dimorphic teiid lizard to test whether individuals that show high levels of physical performance (bite force) are also more aggressive toward a potential threat (i.e., a human approaching the lizard). Our results show that independent of their sex, larger individuals with higher bite forces were indeed more aggressive. Moreover, our data show that individuals with higher bite forces tend to show decreased escape responses and are slower, providing evidence for a trade-off between fight and flight abilities. As bite force increased dramatically with body size, we suggest that large body size and bite force may reduce the threshold for an individual to engage in an aggressive encounter, allowing it to potentially gain or maintain resources and fight off predators while minimizing the risk of injury.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Jaw/physiology , Lizards/physiology , Muscle Strength/physiology , Animals , Body Size/physiology , Brazil , Female , Male , Sex Factors
17.
Article in English | MEDLINE | ID: mdl-18840537

ABSTRACT

Although seasonal metabolic variation in ectothermic tetrapods has been investigated primarily in the context of species showing some level of metabolic depression during winter, but several species of anurans maintain their activity patterns throughout the year in tropical and subtropical areas. The tree-frog Hypsiboas prasinus occurs in the subtropical Atlantic Forest and remains reproductively active during winter, at temperatures below 10 degrees C. We compared males calling in summer and winter, and found that males of H. prasinus exhibit seasonal adjustments in metabolic and morphometric variables. Individuals calling during winter were larger and showed higher resting metabolic rates than those calling during summer. Calling rates were not affected by season. Winter animals showed lower liver and heart activity level of citrate synthase (CS), partially compensated by larger liver mass. Winter individuals also showed higher activity of pyruvate kinase (PK) and lower activity of CS in trunk muscles, and higher activity of CS in leg muscles. Winter metabolic adjustments seem to be achieved by both compensatory mechanisms to the lower environmental temperature and a seasonally oriented aerobic depression of several organs. The impact of seasonal metabolic changes on calling performance and the capacity of subtropical anurans for metabolic thermal acclimatization are also discussed.


Subject(s)
Anura/metabolism , Energy Metabolism , Reproduction , Seasons , Sexual Behavior, Animal , Vocalization, Animal , Acclimatization , Animals , Body Size , Citrate (si)-Synthase/metabolism , L-Lactate Dehydrogenase/metabolism , Liver/enzymology , Male , Muscle, Skeletal/enzymology , Myocardium/enzymology , Oxygen Consumption , Pyruvate Kinase/metabolism , Temperature
18.
J Comp Physiol B ; 178(4): 447-56, 2008 May.
Article in English | MEDLINE | ID: mdl-18185935

ABSTRACT

Anuran amphibians exhibit different patterns of energy substrate utilization that correlate with the intensity of vocal and locomotor activities. Given the remarkable differences among species in breeding and feeding strategies, and the different ways energy is used in the whole animal, the suggested correlations between calling and locomotor behavior and the level of energy substrates in the muscles responsible for such activities are more complex than previously reported. We explored the relationships between calling and locomotor behavior and energy supply to trunk and hindlimb muscles, respectively, within the ecologically diverse tree-frog genus Scinax. Specifically, we measured the relative amount of carbohydrates and lipids in these two groups of muscles, and in the liver of three species of Scinax that differ in vocal and locomotor performance, and compared our results with those of two other species for which comparable data are available. We also compared the contents of lipids and carbohydrates of conspecific males collected at the beginning and after 4 h of calling activity. The stomach content to potential feeding opportunities across species was also assessed in both groups of males. Scinax hiemalis and S. rizibilis exhibit comparatively low and episodic calling during long periods of activity whereas S. crospedospilus calls at higher rates over shorter periods. Male S. hiemalis had highest levels of trunk muscle glycogen followed by those of S. rizilbilis and S. crospedospilus, respectively. There was no correlation between total lipid content in trunk muscle and calling rate among different species, suggesting that other metabolic aspects may be responsible for the energetic support for vocal activity. The levels of lipids and carbohydrates in trunk and hindlimb muscles and liver of males collected at the beginning and 4 h into the calling period were similar across species, so the extent of energetic reserves does not appear to constrain vocal or locomotor activity. Finally, we found exceptionally high levels of carbohydrates and lipids in the liver of S. rizibilis, a trait perhaps related to a long and demanding breeding period.


Subject(s)
Anura/metabolism , Circadian Rhythm , Energy Metabolism , Motor Activity , Sexual Behavior, Animal , Vocalization, Animal , Animals , Carbohydrate Metabolism , Eating , Lipid Metabolism , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Species Specificity , Time Factors
19.
Comp Biochem Physiol A Mol Integr Physiol ; 151(3): 344-362, 2008 Nov.
Article in English | MEDLINE | ID: mdl-17703978

ABSTRACT

Thermal and water balance are coupled in anurans, and species with particularly permeable skin avoid overheating more effectively than minimizing variance of body temperature. In turn, temperature affects muscle performance in several ways, so documenting the mean and variance of body temperature of active frogs can help explain variation in behavioral performance. The two types of activities studied in most detail, jumping and calling, differ markedly in duration and intensity, and there are distinct differences in the metabolic profile and fiber type of the supporting muscles. Characteristics of jumping and calling also vary significantly among species, and these differences have a number of implications that we discuss in some detail throughout this paper. One question that emerges from this topic is whether anuran species exhibit activity temperatures that match the temperature range over which they perform best. Although this seems the case, thermal preferences are variable and may not necessarily reflect typical activity temperatures. The performance versus temperature curves and the thermal limits for anuran activity reflect the thermal ecology of species more than their systematic position. Anuran thermal physiology, therefore, seems to be phenotypically plastic and susceptible to adaptive evolution. Although generalizations regarding the mechanistic basis of such adjustments are not yet possible, recent attempts have been made to reveal the mechanistic basis of acclimation and acclimatization.


Subject(s)
Acclimatization/physiology , Anura/physiology , Biological Evolution , Body Temperature Regulation/physiology , Physical Exertion/physiology , Animals , Locomotion/physiology , Vocalization, Animal/physiology
20.
Ciênc. rural ; 37(1): 64-71, jan.-fev. 2007.
Article in Portuguese | LILACS | ID: lil-440072

ABSTRACT

Objetivou-se neste trabalho, avaliar o efeito da nutrição nitrogenada sobre alguns aspectos relacionados à taxa fotossintética em plantas de mamão da variedade "Golden". As plantas foram cultivadas em vasos sob condições de casa de vegetação, em soluções nutritivas contendo três concentrações de N-N3- (1,0; 5,0 e 8,0molm-3). O delineamento experimental foi em blocos casualizados, com sete repetições. As avaliações foram realizadas 61 dias após o início do experimento. Observou-se que a deficiência de nitrogênio reduziu a matéria seca total; no entanto, a relação raiz:parte aérea foi maior nessas plantas. A taxa fotossintética líquida foi reduzida pela menor disponibilidade de nitrogênio. Os resultados observados para a condutância estomática e a correlação negativa encontrada entre a taxa fotossintética e a concentração interna de CO2 claramente indicam que a menor taxa fotossintética não foi devida à limitação estomática. Adicionalmente, a redução verificada nas concentrações de pigmentos foliares, como as clorofilas a e b e os carotenóides, também pode ter contribuído para a menor taxa fotossintética e o menor crescimento das plantas. A taxa transpiratória foi maior para as plantas cultivadas sob estresse; como conseqüência, observou-se, para essas plantas, menor ganho de CO2 por unidade de água transpirada.


This research was aimed at evaluating the effect of nitrogen (N) levels on some aspects related to the photosynthetic rate in plants of papaya Cv. Golden. The plants were cultivated under greenhouse conditions on different nutritional solutions with three concentrations of N-N3- (1.0; 5.0; 8.0molm-3). The experiment was carried out under a randomized blocks experimental design, with seven repetitions. The evaluations occurred on the 61st day after the beginning of the experiment. The nitrogen deficiency reduced the total dry mass; however, the relation root:shoot was highest for these plants. The photosynthetic rate was reduced by the lesser nitrogen availability. The results observed for the stomatal conductance and the negative correlation found between the photosynthesis and the internal concentration of CO2, indicate clearly that the reduced photosynthetic rate was not due to stomatal limitation. Additionally, the reduction verified in leaf pigments, such as chlorophylls a and b and carotenoids also could have been contributed for the reduction on photosynthesis rate and growth of these plants. Transpiratory rate was higher for the plants cultivated under stress; as consequence it was observed, for these plants, minor CO2 profit for unit of transpirated water.

SELECTION OF CITATIONS
SEARCH DETAIL
...