Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 208: 108446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38422579

ABSTRACT

Adaptive responses to abiotic stresses such as soil acidity in Eucalyptus-the most widely planted broad-leaf forest genus globally-are poorly understood. This is particularly evident in physiological and anatomical disorders that inhibit plant development and wood quality. We aimed to explore how the supply of Ca and Mg through liming (lime), combined with Cu and Zn fertilization (CZF), influences physiological and anatomical responses during Eucalyptus grandis seedlings growth in tropical acid soil. Therefore, related parameters of leaf area and leaf anatomy, stomatal size, leaf gas exchange, antioxidant system, nutrient partitioning, and biomass allocation responses were monitored. Liming alone in Eucalyptus increased specific leaf area, stomatal density on the abaxial leaf surface, and Ca and Mg content. Also, Eucalyptus exposed only to CZF increased Cu and Zn content. Lime and CZF increased leaf blade and adaxial epidermal thickness, and improved the structural organization of the spongy mesophyll, promoting increased net CO2 assimilation, and stomatal conductance. Fertilization with Ca, Mg, Cu, and Zn positively affects plant nutrition, light utilization, photosynthetic rate, and antioxidant performance, improving growth. Our results indicate that lime and CZF induce adaptive responses in the physiological and anatomical adjustments of Eucalyptus plantation, thereby promoting biomass accumulation.


Subject(s)
Calcium Compounds , Eucalyptus , Oxides , Seedlings , Seedlings/metabolism , Eucalyptus/metabolism , Antioxidants/metabolism , Plant Leaves/metabolism , Photosynthesis/physiology , Soil , Zinc/metabolism
2.
Environ Sci Pollut Res Int ; 31(1): 215-227, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049693

ABSTRACT

Given the increasing problems of water and soil contamination with cadmium (Cd), it is necessary to investigate the genetic and physiological mechanisms of tolerance to this metal in different crops, which can be used for the development of effective crop management strategies. This study aimed to assess the potential of grafting as a strategy to increase Cd tolerance and reduce absorption in tomato by evaluating the contribution of the root system and aerial parts for tolerance mechanisms. To this end, reciprocal grafting and diallel analyses were used to examine the combining ability of contrasting tomato genotypes under exposure to 0 and 35 µM CdCl2. Roots and above-ground parts were found to have specific mechanisms of Cd tolerance, absorption, and accumulation. Grafting of the USP15 genotype (scion) on USP16 (rootstock) provided the greatest synergism, increasing the tolerance index and reducing the translocation index and Cd accumulation in leaves. USP163 exhibited potential for breeding programs that target genotypes with high Cd tolerance. In tomato, both Cd tolerance and accumulation in aerial parts are genotype- and tissue-specific, controlled by a complex system of complementary mechanisms that need to be better understood to support the development of strategies to reduce Cd contamination in aerial parts.


Subject(s)
Soil Pollutants , Solanum lycopersicum , Cadmium , Plant Roots , Plant Breeding , Water
3.
Sci Rep ; 11(1): 17834, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34497292

ABSTRACT

In the agricultural industry, advances in optical imaging technologies based on rapid and non-destructive approaches have contributed to increase food production for the growing population. The present study employed autofluorescence-spectral imaging and machine learning algorithms to develop distinct models for classification of soybean seeds differing in physiological quality after artificial aging. Autofluorescence signals from the 365/400 nm excitation-emission combination (that exhibited a perfect correlation with the total phenols in the embryo) were efficiently able to segregate treatments. Furthermore, it was also possible to demonstrate a strong correlation between autofluorescence-spectral data and several quality indicators, such as early germination and seed tolerance to stressful conditions. The machine learning models developed based on artificial neural network, support vector machine or linear discriminant analysis showed high performance (0.99 accuracy) for classifying seeds with different quality levels. Taken together, our study shows that the physiological potential of soybean seeds is reduced accompanied by changes in the concentration and, probably in the structure of autofluorescent compounds. In addition, altering the autofluorescent properties in seeds impact the photosynthesis apparatus in seedlings. From the practical point of view, autofluorescence-based imaging can be used to check modifications in the optical properties of soybean seed tissues and to consistently discriminate high-and low-vigor seeds.


Subject(s)
Glycine max , Optical Imaging/methods , Seedlings , Seeds , Agriculture , Machine Learning
5.
Environ Sci Pollut Res Int ; 28(36): 50931-50940, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34378132

ABSTRACT

Industrial revolution markedly increased the environmental contamination by different pollutants, which include the metal lead (Pb). The phytoremediation potential of native species from tropical regions is little known, especially for woody plants. The present study aimed to evaluate the performance of Lonchocarpus cultratus (Fabaceae), a tree species from the Brazilian savanna, grown in soil that was artificially contaminated with increasing Pb concentrations (control and 4 Pb treatments, 56, 120, 180, and 292 mg kg-1) for 6 months. The biomass of L. cultratus was not depressed by exposure to Pb, despite the high accumulation of this metal (up to 7421.23 µg plant-1), indicating a high plant tolerance to this trace metal. Lead was mainly accumulated in roots (from 67 to 99%), suggesting that the low root-to-shoot Pb translocation is a plant strategy to avoid Pb-induced damages in photosynthetic tissues. Accordingly, the content of chlorophylls a and b was maintained at similar levels between Pb-treated and control plants. Moreover, increments in leaf area were noticed in Pb-treated plants in comparison to the control plants (on average, 24.7%). In addition, root length was boosted in plants under Pb exposure (22.6-66.7%). In conclusion, L. cultratus is able to endure the exposure to high Pb concentrations in soil, being a potential plant species to be used for Pb phytostabilization in metal-contaminated soils in tropical regions.


Subject(s)
Fabaceae , Soil Pollutants , Biodegradation, Environmental , Grassland , Lead , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Trees
6.
Sci Total Environ ; 789: 147885, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34323842

ABSTRACT

The present study aimed to investigate the Cd-induced transgenerational effects on plants. Grafted tomato plants, which exhibited the same cultivar as scion and distinct cultivars with contrasting Cd-tolerance as rootstocks, were grown in soil without and with artificial addition of Cd (less than 2.0, and 6.9 mg kg-1 of Cd, respectively) in a pot experiment carried out in a greenhouse. Their fruits were harvested to extract seeds (i.e., the progenies), which were sown over either Cd-free (control) or Cd-containing germitest paper (germination testing paper with 0 and 35 µM of CdCl2, respectively) and grown in a growth chamber. The immediate progeny of all grafting combinations from stressed plants presented an elevated germinability, despite high internal Cd concentration. When sown in Cd-containing germitest paper, the immediate progeny of plants grown in soil with no Cd addition was generally able to maintain or even increase the content of carotenoids and chlorophylls a and b (up to 93.3, 62.8 and 76.1%, respectively), indicating a Cd-induced hormetic effect on photosynthetic pigments. Two of the grafting combinations from stressed plants yielded seeds that generated seedlings with enhanced dry mass when they were sown in Cd-free media (~41%), suggesting a Cd-induced transgenerational enhancement of biomass production. Because only one tomato cultivar was used as scion, data indicated that type and degree of Cd-induced transgenerational effects depend strongly on signals generated and/or processed in roots of the parental plants. When sown in Cd-contaminated germitest paper, the immediate progeny of Cd-treated plants presented major reductions in the leaf area (35-69%) and content of photosynthetic pigments (57-93%) in comparison to the progeny from control plants. However, one of the grafting combinations exhibited satisfactory performance after "double" exposure to Cd, showing 91% of the biomass that was produced in the seedlings of control seeds from control plants. Further investigation indicated that adjustments in the chlorophyll fluorescence behavior might counterbalance losses in leaf pigments and area. Taken together, our data provide new insights on the origin, outcomes and mode of action of the Cd-induced transgenerational effects.

7.
Environ Sci Pollut Res Int ; 28(20): 26172-26181, 2021 May.
Article in English | MEDLINE | ID: mdl-33834343

ABSTRACT

The objective of the present study was to assess the response of tomato cultivars with different fruit colors to exposure to increasing Cd levels in the substrate by measuring the impacts of Cd on the oxidative stress indicators and physicochemical features of fruits, as well as plant development and yield components. A completely randomized experiment in a 3 × 3 factorial design [tomato cultivar (which produces purple, red, or white fruits) vs Cd level in the substrate (0, 3.6, or 12 mg kg-1)] was performed. The cultivation of plants in substrate containing 3.6 mg kg-1 Cd did not affect yield, but fruits exhibited nonpermissive Cd concentrations in both peel and mesocarp across all cultivars. By contrast, yield was decreased in plants with red and white fruits after their cultivation in substrate containing 12 mg kg-1 Cd, while the productivity of plants with purple fruits was maintained under such conditions. The hydrogen peroxide content in the fruit mesocarp depended only on cultivar. However, an increased lipid peroxidation level was detected in the mesocarp of purple fruits at the highest Cd concentration. No parameters of fruit quality [i.e., diameter, length, °Brix, pH, titratable acidity, color (L*, a*, and b*), and concentrations of lycopene and ß-carotene in mesocarp] were affected by long-term exposure to Cd at 12 mg kg-1. In conclusion, the results of this study suggested that the potential Cd side effects on diverse tomato quality features can be buffered at the fruit level because these features were maintained at the usual values despite high Cd concentrations in tomato peel and pulp. Moreover, these buffering mechanisms are independent of lycopene and ß-carotene concentrations in fruit peel, since the three tomato cultivars that were evaluated in the present study (white fruits, possessing no or negligible concentrations of these carotenoids, and red and purple tomato, possessing high lycopene and ß-carotene concentrations) were able to sustain several fruit quality parameters after long-term exposure to high Cd concentrations in the substrate.


Subject(s)
Cadmium/toxicity , Solanum lycopersicum , Carotenoids , Color , Fruit
8.
Ecotoxicology ; 28(9): 1046-1055, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31502144

ABSTRACT

This study aimed to investigate the mode of action of cadmium (Cd) toxicity at cell level, especially at early stages of plant exposure. Tomato seedlings were cultivated in growth media containing from 0.1 to 70 µM CdCl2 for 24 h. Mitotic index, chromosome abnormality, DNA integrity and organization of tubulin-based structures were assessed in root cells. As higher the Cd concentration in the growth media, higher was the DNA damage intensity and the occurrence of chromosomal abnormalities that included chromosome lost, bridges, stickiness, C-metaphase and polyploidy. The profile of chromosomal aberrations also varied with elevated Cd concentration, being observed increases in the frequency of chromosome stickiness. The mitotic index was reduced at the lowest Cd concentration, but such reduction was statistically similar to that detected at the highest concentration, suggesting that mitotic depression is a rapid outcome and, at same time, a Cd-induced effect that is limited at the first 24 h of direct root exposure to this metal. Under exposure to 20 µM CdCl2, heterogenous distribution of the spindle fibers, formation of two spindle complexes in both of the cell poles, absence of centrosome center, polarization of the spindle fibers during cell division, and non-uniform tubulin deposition in microtubule and phragmoplast were noticed. The results indicate that the tubulin-dependent components of cytoskeleton are Cd targets, and the sensitivity of tubulin-based structures to Cd exposure depends on cell cycle phase. Moreover, DNA damage intensity and chromosomal abnormality profile can be employed as markers of Cd toxicity level.


Subject(s)
Cadmium/toxicity , Cell Cycle/drug effects , Chromosomal Instability/drug effects , Cytoskeleton/drug effects , Soil Pollutants/toxicity , Solanum lycopersicum/drug effects , Seedlings/drug effects
9.
J Environ Manage ; 240: 84-92, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30928798

ABSTRACT

Distinct tomato genotypes possess different tolerance degree to cadmium (Cd), but the mechanisms behind this phenomenon are scarcely understood. To this end, the physiological, biochemical, anatomical, nutritional and molecular mechanisms associated to the plant tolerance against Cd toxicity were investigated in five tomato accessions with contrasting sensitivity to Cd exposure. Firstly, the data revealed that larger biomass loss was not always coupled to higher Cd concentration, indicating that other events, in addition to the internal Cd accumulation, impact tomato performance at early stages of Cd exposure. Secondly, the results indicated that the fine regulation of nutrient status, particularly magnesium (Mg), boron (B) and manganese (Mn), is associated to the mitigation of Cd toxicity. Magnesium status was coupled to the modulation of root development, resulting in changes in root hair formation and biomass allocation. Boron accumulation in leaves was linked to Cd toxicity, suggesting that tolerance mechanisms involved strategies to decrease or even avoid B excess in photosynthetic tissues. Disturbances in Mn status, i.e. Mn excess in leaves and Mn deficiency in roots, were also related to tomato sensitivity to Cd exposure. Thirdly, plant capacity to maintain leaf blade expansion is a relevant strategy for a better tomato development after short-term Cd exposure. Fourthly, tomato tolerance to Cd-induced stress does not depend on CAT activity enhancements in such conditions. In conclusion, tomato ability to quickly manage its nutritional status is necessary for alleviation of the Cd effects at early stages of exposure to this metal. The better understanding about tolerance mechanisms and mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crops.


Subject(s)
Solanum lycopersicum , Cadmium , Magnesium , Manganese , Plant Roots
10.
Ecotoxicology ; 27(10): 1293-1302, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30259382

ABSTRACT

Cadmium (Cd) toxicity is frequently coupled to its accumulation in plants, but not always the highest Cd concentration triggers the worst damages, indicating that additional events influence the magnitude of Cd side-effects. We investigated the early mechanisms behind the differential Cd-induced impacts on plant development of four tomato accessions with contrasting tolerance to Cd toxicity. At organ level, the highest Cd concentration was not associated with the largest biomass losses. In leaves, changes in superoxide dismutase and catalase activities were not related to differences in Cd concentration, which was unable to provoke H2O2 overproduction on the sixth day of plant exposure to this metal. Further investigation in the mineral profile revealed that magnitude of Cd toxicity depends probably on synergic effects from increased B status, in addition to the own Cd accumulation. Furthermore, disbalances in Mn status (i.e., excess in leaves and deficiency in roots) may enhance Cd toxicity degree. According to data, however, the low magnesium (Mg) status can be linked to tomato tolerance against Cd toxicity. In conclusion, the tomato tolerance degree under short-Cd exposure depends on actively, finely regulation of mineral homeostasis that results in different development of plant organs. The better understanding on the mode of action of Cd toxicity in plants can help in the establishment of strategies to mitigate its impacts on crop yield.


Subject(s)
Cadmium/toxicity , Soil Pollutants/toxicity , Solanum lycopersicum/physiology , Catalase/metabolism , Solanum lycopersicum/drug effects , Oxidation-Reduction , Plant Roots/drug effects , Plant Shoots/drug effects , Seedlings/drug effects , Superoxide Dismutase/metabolism
11.
Environ Sci Pollut Res Int ; 25(27): 27535-27544, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30051291

ABSTRACT

This work aimed to develop a reliable and fast approach to estimate the plant tolerance degree to heavy metal (HM) phytotoxicity. Two independent experiments were carried out using tomato accessions, with contrasting morphological features, that were grown in a hydroponic solution containing different CdCl2 concentrations for 7 days. Plant dry weight and chlorophyll content (SPAD units) were evaluated, and tolerance degree to Cd toxicity was estimated according to the tolerance index (TI), which is a new mathematical formula based on plant biomass proposed in this study. Although with different magnitudes, tomato exhibited reductions in their dry weight concurrently with the increasing CdCl2 concentration. By contrast, chlorophyll content presented no standard response, decreasing and even increasing according to CdCl2 concentrations, indicating that only under certain conditions (particularly, at CdCl2 50 µM), this parameter can be used to estimate plant tolerance to Cd toxicity. TI was efficiently able to segregate tomato cultivars with similar performance (based on the total dry weight of plants), and such segregation was optimized when the hydroponic solution contained from 25 to 50 µM CdCl2. Within this range, data pointed at 35 µM CdCl2 as the best concentration to be employed in studies related to the tomato tolerance/sensitivity to Cd toxicity. In conclusion, TI proved to be a reliable estimator of tolerance degree to Cd exposure in genetically distinct tomato accessions. Moreover, TI can be used for this same purpose in plants under other HM-induced stresses.


Subject(s)
Cadmium Chloride/toxicity , Metals, Heavy/toxicity , Solanum lycopersicum/drug effects , Biomass , Chlorophyll/metabolism , Dose-Response Relationship, Drug , Drug Tolerance , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Models, Theoretical , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plant Shoots/drug effects , Plant Shoots/genetics , Plant Shoots/growth & development
12.
Protoplasma ; 255(4): 989-999, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29354852

ABSTRACT

Although negative effects on the offspring fitness can be triggered by the mother-plant exposure to environmental stresses, some plants are able to "remember" past incidents and enhance the progeny tolerance. Here, the mineral profile, cytogenetic modifications, and physiological potential of seeds from two tomato cultivars, with contrasting tolerance degrees to cadmium (Cd) toxicity, were evaluated after plant exposure to this metal. Both cultivars exhibited high Cd translocation to the seeds; however, the tolerant tomato accumulated more Cd than did the sensitive one. As a consequence of the Cd accumulation, reductions in the Mn concentration in Cd-challenged plants were detected. Surprisingly, seed germination and vigor were increased in the tolerant tomato cultivar after Cd exposure, despite increases in the chromosomal abnormalities. By contrast, seeds from the sensitive cultivar exhibited no changes in their physiological potential after Cd exposure, despite Cd-induced reductions in the mitotic index. Moreover, bunch position exerted effects on the vigor and type of chromosomal abnormality. The results show that maternal plant exposure to Cd can affect tomato offspring by changing the seed physiological potential, and such effect can be partially explained by alterations in the seed-derived elements (essential and non-essential) and genotype-dependent tolerance mechanisms.


Subject(s)
Cadmium/toxicity , Germination/drug effects , Plant Roots/drug effects , Seeds/drug effects , Solanum lycopersicum/drug effects , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...