Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(4): e0211565, 2019.
Article in English | MEDLINE | ID: mdl-31009472

ABSTRACT

The aim of this study was to describe energy partitioning in dairy crossbreed bulls fed tropical forage-based diets supplemented with different additives. Twenty F1 crossbred bulls (Holstein x Gyr) with initial and final live weight (LW) averages of 190 ± 17 and 275 ± 20 kg were fed sorghum (Sorghum bicolour) and Tanzania grass (Panicum maximum cv. Tanzania) silage (70:30 DM basis) with supplemented concentrate at a forage to concentrate ratio of 50:50. The bulls were allocated to four treatment: control groups (without additives), monensin [22 mg/kg monensin dry matter (DM)] (M), virginiamycin (30 mg/kg virginiamycin DM) (V), and combination (22 mg/kg DM of monensin and 30 mg/kg DM of virginiamycin) (MV), in a completely randomised design. The intake of gross energy (GE, MJ/d), digestible energy (DE, MJ/d), metabolizable energy (ME, MJ/d), as well as energy losses in the form of faeces, urine, methane, heat production (HE), and retained energy (RE) were measured. Faecal output was measured in apparent digestibility trial. Right after the apparent digestibility trial, urine samples were collected in order to estimate the daily urinary production of the animals. Heat and methane production were measured in an open circuit respirometry chamber. The intake of GE, DE, and ME of the animals receiving monensin and virginiamycin alone or in combination (MV) showed no differences (P>0.05) from the control treatment. However, the MV treatment reduced (P<0.05) the methane production (5.44 MJ/d) compared to the control group (7.33 MJ/d), expressed in MJ per day, but not when expressed related to gross energy intake (GEI) (CH4, % GEI) (P = 0.34). Virginiamycin and monensin alone or in combination did not change (P>0.05) the utilization efficiency of ME for weight gain, RE and net gain energy. This study showed that for cattle fed tropical forages, the combination of virginiamycin and monensin as feed additives affected their energy metabolism by a reduction in the energy lost as methane.


Subject(s)
Animal Feed , Cattle/physiology , Diet/veterinary , Energy Intake , Animal Feed/analysis , Animals , Anti-Bacterial Agents/pharmacology , Energy Intake/drug effects , Energy Metabolism/drug effects , Male , Monensin/pharmacology , Panicum/metabolism , Sorghum/metabolism , Virginiamycin/pharmacology , Weight Gain/drug effects
2.
PLoS One ; 13(8): e0202088, 2018.
Article in English | MEDLINE | ID: mdl-30118491

ABSTRACT

The aim of this study was to determine the energy metabolism and partition of lactating Gyr and F1 Holstein x Gyr (F1 HxG) cows in different planes of nutrition. Six F1 HxG and six Gyr cows with 130 days in milking (DIM) fed corn silage and concentrate were evaluated. The experiment consisted of four periods with different levels of feeding: 1st ad libitum dry matter intake (DMI) and the others with 5, 10 and 20% restricted DMI, related to the first one. An apparent digestibility assay was performed before measurements in the respiration chamber. Total feces were collected for three days. The cows were confined for 24h in the chamber in each period to determine methane and heat production (HP). F1 HxG had higher gross energy intake (GEI), metabolisable energy intake (MEI) and digestible energy intake (DEI). GE lost in feces was higher in F1 HxG (23.7% GEI) than in Gyr (20.5%) cows. Energy lost as methane and urine was similar between the groups. The metabolisability (q) was 0.67, and the efficiency of converting ME to NE (k) was 0.56. There was no difference in the energy requirements for maintenance between breeds (426.6 MJ/kg BW0,75 average value). The energy requirements for lactation were higher in F1 HxG animals due to the higher volume of milk produced, since there was no difference in energy requirements for production of one kg of milk.


Subject(s)
Animal Nutritional Physiological Phenomena , Breeding , Crosses, Genetic , Energy Metabolism , Lactation , Animal Feed , Animals , Cattle , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...