Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Arch Virol ; 167(12): 2555-2566, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269413

ABSTRACT

Cowpea mild mottle virus (CPMMV) is a flexuous filamentous virus that belongs to the genus Carlavirus (family Betaflexiviridae). The CPMMV genome contains six open reading frames (ORFs), among which the triple gene block (TGB), encoded by ORFs 2 to 4, has been reported to encode movement proteins for different viruses. The subcellular localization of the TGB proteins of CPMMV isolate CPMMV:BR:MG:09:2 was analysed by transient expression of each protein fused to a fluorophore. Overall, the accumulation pattern and interactions among CPMMV TGB proteins (TGBp) were similar to those of their counterparts from the potex-like group. Considering these similarities, we evaluated the potential interactions between the TGB proteins of CPMMV and of potato virus X, which could complement cell-to-cell movement. The TGBp2 and TGBp3 of PVX had an effect on CPMMV TGBp1, directing it to the plasmodesmata, but the reverse was not true.


Subject(s)
Carlavirus , Flexiviridae , Potexvirus , Nicotiana , Viral Proteins/genetics , Viral Proteins/metabolism , Carlavirus/genetics , Potexvirus/genetics , Flexiviridae/genetics
3.
Braz. j. med. biol. res ; 36(8): 993-1002, Aug. 2003. ilus, graf
Article in English | LILACS | ID: lil-340795

ABSTRACT

Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions


Subject(s)
Animals , Axons , Chondroitin Sulfates , Heparitin Sulfate , Mesencephalon , Neurons , Astrocytes , Cell Division , Cells, Cultured , Mesencephalon , Neuroglia
4.
Braz J Med Biol Res ; 36(8): 993-1002, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12886453

ABSTRACT

Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.


Subject(s)
Axons/physiology , Chondroitin Sulfates/physiology , Heparitin Sulfate/physiology , Mesencephalon/embryology , Neurons/physiology , Aggrecans , Animals , Astrocytes/drug effects , Astrocytes/physiology , Cell Division/physiology , Cell Movement , Cells, Cultured , Heparan Sulfate Proteoglycans/physiology , Mesencephalon/cytology , Mice , Neuroglia/physiology , Polysaccharide-Lyases/pharmacology , Proteoglycans/physiology
5.
Arch Histol Cytol ; 62(3): 249-52, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10495879

ABSTRACT

Lectins are proteins with binding affinities for specific sugars in complex glycoconjugates, some of which have been implicated in limiting synaptic plasticity or modulating nerve growth and guidance. We studied the expression of the glycoconjugate recognized by the isolectin B4 of Griffonia simplicifolia (Gs-IB4) in spinal dorsal horns after massive axotomy of the brachial plexus in weanling rats. Gs-IB4+ binding sites in Rexed's lamina II were rapidly reduced after massive peripheral axotomy. This rapid loss suggests that multiple nerve lesions minimize the number of intact fibers that converge with lesioned fibers into the same cord segments and thus may prevent the plastic changes accompanying the lesion of single nerves.


Subject(s)
Brachial Plexus/surgery , Ganglia, Spinal/metabolism , Lectins/metabolism , Animals , Axotomy , Female , Male , Rats , Rats, Wistar , Spinal Nerve Roots/metabolism
6.
J Neurosci Res ; 40(4): 471-7, 1995 Mar 01.
Article in English | MEDLINE | ID: mdl-7616607

ABSTRACT

Regional astrocyte cultures were obtained by dissecting and dissociating medial and lateral sectors of the midbrain from 14-day Swiss mouse embryos. Once confluent, these cultures were tested by glial fibrillary acidic protein (GFAP) immunocytochemistry to confirm their astrocyte composition and for 2'-3' cyclic nucleotide 3'-phosphohydrolase (CNPase) and microtubule-associated protein 2 (MAP2) immunocytochemistry to rule out oligodendroglial and neuronal components, respectively. In confluent astrocyte cultures from either sector, virtually all cells were GFAP-positive elements, most of which were flat cells accompanied by smaller numbers of flat cells with processes. Confluent astrocyte cultures, derived from medial (M) or lateral (L) sectors, were used as substrata for culturing dissociated cells from medial (m) or lateral (l) sectors of 14-day embryonic midbrains. Fixed cocultures (Ll, Lm, Mm, Ml) were stained with an anti-MAP2 antibody to verify neuronal aggregation and neuritic morphology. In spite of the morphological constancy of glial substrata at plating, MAP2-positive cells in cocultures showed differences in the aggregation of somata and in the length, caliber, and branching of neurites. These differences, which depend mostly on the sector of origin of astrocytes, suggest that the substrata may differ in adhesiveness and/or growth-promoting vs. growth-interfering properties. Together with evidence for sectorial heterogeneity in brainstem radial glia, the present results raise the possibility that cultured astrocytes have properties that reflect the roles played by their parent radial glia in the developing brain.


Subject(s)
Mesencephalon/physiology , Neuroglia/physiology , Neurons/physiology , Animals , Astrocytes/physiology , Cell Count , Cells, Cultured , Immunohistochemistry , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...