Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(19): 23582-23594, 2021 May.
Article in English | MEDLINE | ID: mdl-32638314

ABSTRACT

As the presence of antibiotics in environmental waters enhances antimicrobial resistance, photolysis and heterogeneous photocatalysis of chloramphenicol (CAP) were evaluated in deionized water (DW) and in sewage treatment plant (STP) effluent under black light and solar irradiation. Processes were compared in terms of CAP degradation, reaction kinetics, and electrical energy per order, as well as regarding theoretical toxicity, biodegradability, carcinogenicity, and mutagenicity of transformation products (TPs). Rate constants obtained under photolysis (0.008 min-1) and heterogeneous photocatalysis (0.18 min-1) only differed in DW. This is due to the generation of photo-active reactive oxygen species (HO· and HO2·-/O2·-) under photolysis in STP effluent, as verified by experiments in the presence of 2-propanol and chloroform. Natural organic matter and HCO3- were the main responsible for reducing CAP degradation in STP effluent. Fifteen TPs were identified during both processes in DW, 13 of which are unprecedented. TPs were formed mainly via HO· preferential attack on the aromatic ring and on the α-carbon, and some of them were classified as persistent and toxic, genotoxic, or carcinogenic by Toxtree software. Results confirm that solar photocatalysis is less costly than to photocatalysis under black light for wastewater treatment.


Subject(s)
Chloramphenicol , Water Pollutants, Chemical , Kinetics , Photolysis , Water , Water Pollutants, Chemical/analysis
2.
J Environ Manage ; 236: 715-719, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30772728

ABSTRACT

Municipal Solid Waste (MSW) from the city of Boa Esperança, Minas Gerais, Brazil, was used to produce refuse-derived fuel (RDF). The MSW contains residues from human society, including product packaging, bottles, batteries, organic waste, fines, textiles, health textiles, plastics, glass, and metals, among others. The following protocol was performed during the conversion of MSW to RDF: (i) the raw MSW was placed in a silo and sent to a primary crusher using a metal conveyor belt, which reduced the particle size to 80 mm; (ii) the biomass was transferred to a selective waste collection platform by a rubber conveyor belt, and the recyclable waste, metals, and glasses were separated manually; (iii) residual metals were removed by a magnetic separator; (iv) the waste was transferred to a secondary crusher which reduced the particle size to 60 mm; (v) the waste passed through an airborne separator to remove materials with high density, such as glass, stones, and organic materials, using a metallic conveyor belt; (vi) the particle size was reduced to 40 mm by a tertiary crusher; (vii) the aluminium was separated from the non-metallic materials (plastic, paper, rubber, etc.) using an eddy current separator; (viii) the particle size was reduced to 25 mm using a quaternary crusher; (ix) the MSW was introduced into a rotary dryer using a metal conveyor belt, where the moisture content was reduced to close to 15 wt%, which required thermal energy equivalent to 186 kWh; (x) the RDF was used in a thermochemical reactor and 4148 kWh of thermal energy was produced. In addition, the MSW and RDF were analysed, and the elemental composition and combustion characteristics were determined. Based on these results, the protocol evaluated was found to be effective in the conversion of MSW to RDF, which can be used as a source of renewable fuel.


Subject(s)
Garbage , Refuse Disposal , Brazil , Cities , Humans , Industrial Waste , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...