Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 9998, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705722

ABSTRACT

Bee pollen is recommended as dietary supplement due to immunostimulating functions including antioxidant, anti-inflammatory and anti-carcinogenic properties. Nevertheless, the effectiveness of such properties is still not well understood. As diet can be associated with animal performance, microbiota modulation and potentially factor for cancer, this study aimed to analyze if bee pollen could influence growth, gut microbial and skin cutaneous melanoma development in zebrafish. Control diets based on commercial flakes and Artemia were compared with the same diet supplemented with bee pollen. Fish weight gain, increased length, intestinal bacteria metagenomics analysis, serum amyloid A gene expression and cutaneous melanoma transplantation assays were performed. Bee pollen affected microbiota composition and melanoma development. Differential abundance revealed higher abundance in the control group for Aeromonadaceae family, Aeromonas and Pseudomonas genus, A. sobria, A. schubertii, A. jandaei and P. alcaligenes species compared with pollen diet group. Pollen group presented higher abundance for Chromobacterium genus and for Gemmobacter aquaticus, Flavobacterium succinicans and Bifidobacterium breve compared with control group. Unexpectedly, fish fed with bee pollen showed higher tumor growth rate and larger tumor size than control group. This is the first study to report intestinal microbial changes and no protective cancer properties after bee pollen administration.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Skin Neoplasms , Animals , Bees , Diet , Melanoma/etiology , Pollen , Skin Neoplasms/etiology , Zebrafish , Melanoma, Cutaneous Malignant
2.
Fish Shellfish Immunol ; 119: 300-307, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34656757

ABSTRACT

Bee pollen, a natural resource collected by bees, is rich in many nutrients, therefore it may represent a useful dietary supplement. Different uses of bee pollen are proposed due to its beneficial health properties, which includes the capacity to improve animal performance and promote immunostimulation. Animal nutrition can directly affect adults and their offspring, and larval stage is a critical moment for fish due to high mortality related to immune challenges. Thus, the present study attempted to evaluate the effects of adding bee pollen to a zebrafish diet, specifically, analyzing the effects on reproduction and immunity transference to descendants. Zebrafish adults received control diets based on commercial flakes and live food Artemia sp. nauplii or bee pollen-supplemented diets, administered three times a day, at the same time. The animals received the diets over 60 d, and throughout this period, they were tested for: egg production per female, total number of eggs, embryo viability rate, larval survival rate after exposure to spring viremia of carp virus and to Salmonella enterica serovar Typhimurium, and larval neutrophil recruitment after tail wounding. Bee pollen supplementation failed to improve egg production and embryo viability, and was unable to substitute flakes in zebrafish breeders. Instead, the offspring of breeders fed with bee pollen supplemented diets showed longer survival upon virus exposure and higher neutrophil migration to wounds. These results indicate that bee pollen can influence vertical immunity through important mechanisms related to offspring immunity in the early stages, when larval immune system is not fully developed.


Subject(s)
Pollen , Zebrafish , Animal Nutritional Physiological Phenomena , Animals , Bees , Diet/veterinary , Dietary Supplements , Larva , Reproduction
3.
Environ Toxicol Chem ; 36(6): 1652-1660, 2017 06.
Article in English | MEDLINE | ID: mdl-27925273

ABSTRACT

Bees are recognized worldwide for their social, economic, and environmental value. In recent decades they have been seriously threatened by diseases and high levels of pesticide use. The susceptibility of bees to insecticides makes them an important terrestrial model for assessing environmental quality, and various biomarkers have been developed for such assessments. The present study aimed to evaluate the activity of the enzymes acetylcholinesterase (AChE), carboxylesterase (CaE), and glutathione-S-transferase (GST) in Africanized honeybees exposed to fipronil. The results showed that fipronil at a sublethal dose (0.01 ng/bee) modulates the activity of CaE in all isoforms analyzed (CaE-1, CaE-2, and CaE-3) in both newly emerged and aged bees, and does not affect the activity of AChE or GST. The recovery of the bees after fipronil exposure was also investigated, and these results demonstrated that even the cessation of fipronil ingestion might not lead to complete recovery of individual bees. Even at low doses, fipronil was shown to cause changes in the activity of key enzymes in bees. The possible consequences of these changes are discussed. Environ Toxicol Chem 2017;36:1652-1660. © 2016 SETAC.


Subject(s)
Bees/drug effects , Insecticides/pharmacology , Pyrazoles/pharmacology , Acetylcholinesterase/metabolism , Animals , Gene Expression Regulation, Enzymologic/drug effects , Glutathione Transferase/metabolism , Protein Isoforms
4.
Environ Toxicol Chem ; 32(9): 2117-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23712883

ABSTRACT

The present study was intended to evaluate the responses of enzymes in the honeybee Apis mellifera after exposure to deltamethrin, fipronil, and spinosad and their use as biomarkers. After determination of the median lethal doses (LD50), honeybees were exposed at doses of 5.07 ng/bee and 2.53 ng/bee for deltamethrin, 0.58 ng/bee and 0.29 ng/bee for fipronil, and 4.71 ng/bee and 2.36 ng/bee for spinosad (equivalent to 1/10th [LD50/10] and 1/20th [LD50/20] of the LD50, respectively). The responses of acetylcholinesterase (AChE), carboxylesterases (CaEs-1-3), glutathione-S-transferase (GST), catalase (CAT), and alkaline phosphatase (ALP) were assessed. The results showed that deltamethrin, fipronil, and spinosad modulated these biomarkers differentially. For the enzyme involved in the defense against oxidative stress, fipronil and spinosad induced CAT activity. For the remaining enzymes, 3 response profiles were identified. First, exposure to deltamethrin induced slight effects and modulated only CaE-1 and CaE-2, with opposite effects. Second, spinosad exhibited an induction profile for most of the biomarkers, except AChE. Third, fipronil did not modulate AChE, CaE-2, or GST, increased CAT and CaE-1, and decreased ALP. Thus, this set of honeybee biomarkers appears to be a promising tool to evaluate environmental and honeybee health, and it could generate fingerprints to characterize exposures to pesticides.


Subject(s)
Bees/drug effects , Environmental Pollutants/toxicity , Insecticides/toxicity , Alkaline Phosphatase/metabolism , Animals , Bees/enzymology , Biomarkers/metabolism , Carboxylic Ester Hydrolases/metabolism , Catalase/metabolism , Drug Combinations , Glutathione Transferase/metabolism , Macrolides/toxicity , Nitriles/toxicity , Pyrazoles/toxicity , Pyrethrins/toxicity
5.
Arch Environ Contam Toxicol ; 64(3): 456-66, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23224048

ABSTRACT

Fipronil is a neurotoxic insecticide that inhibits the gamma-aminobutyric acid receptor and can affect gustative perception, olfactory learning, and motor activity of the honeybee Apis mellifera. This study determined the lethal dose (LD50) and the lethal concentration (LC50) for Africanized honeybee and evaluated the toxicity of a sublethal dose of fipronil on neuron metabolic activity by way of histochemical analysis using cytochrome oxidase detection in brains from worker bees of different ages. In addition, the present study investigated the recovery mechanism by discontinuing the oral exposure to fipronil. The results showed that mushroom bodies of aged Africanized honeybees are affected by fipronil, which causes changes in metabolism by increasing the respiratory activity of mitochondria. In antennal lobes, the sublethal dose of fipronil did not cause an increase in metabolic activity. The recovery experiments showed that discontinued exposure to a diet contaminated with fipronil did not lead to recovery of neural activity. Our results show that even at very low concentrations, fipronil is harmful to honeybees and can induce several types of injuries to honeybee physiology.


Subject(s)
Bees/drug effects , Brain , Electron Transport Complex IV/metabolism , Environmental Pollutants/toxicity , Neurons , Pyrazoles/toxicity , Aging/metabolism , Animals , Bees/enzymology , Brain/drug effects , Brain/enzymology , Brain/metabolism , Dose-Response Relationship, Drug , Lethal Dose 50 , Mushroom Bodies/drug effects , Mushroom Bodies/enzymology , Mushroom Bodies/metabolism , Neurons/drug effects , Neurons/enzymology , Neurons/metabolism , Toxicity Tests, Acute
6.
Ecotoxicol Environ Saf ; 82: 22-31, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22683234

ABSTRACT

This study describes the development of acetylcholinesterase (AChE), carboxylesterases (CaE1, CaE2, CaE3), glutathion-S-transferase (GST), alkaline phosphatase (ALP) and catalase (CAT) as enzyme biomarkers of exposure to xenobiotics such as thiamethoxam in the honey bee Apis mellifera. Extraction efficiency, stability under freezing and biological variability were studied. The extraction procedure achieved good recovery rates in one extraction step and ranged from 65 percent (AChE) to 97.3 percent (GST). Most of the enzymes were stable at -20°C, except ALP that displayed a slight but progressive decrease in its activity. Modifications of enzyme activities were considered after exposure to thiamethoxam at the lethal dose 50 percent (LD(50), 51.16 ng bee(-1)) and two sublethal doses, LD(50)/10 (5.12 ng bee(-1)) and LD(50)/20 (2.56 ng bee(-1)). The biomarker responses revealed that, even at the lowest dose used, exposure to thiamethoxam elicited sublethal effects and modified the activity of CaEs, GST, CAT and ALP. Different patterns of biomarker responses were observed: no response for AChE, an increase for GST and CAT, and differential effects for CaEs isoforms with a decrease in CaE1 and CaE3 and an increase in CaE2. ALP and CaE3 displayed contrasting variations but only at 2.56 ng bee(-1). We consider that this profile of biomarker variation could represent a useful fingerprint to characterise exposure to thiamethoxam in the honey bee A. mellifera. This battery of honey bee biomarkers might be a promising option to biomonitor the health of aerial and terrestrial ecosystems and to generate valuable information on the modes of action of pesticides.


Subject(s)
Bees/drug effects , Biomarkers/analysis , Insecticides/toxicity , Nitro Compounds/toxicity , Oxazines/toxicity , Thiazoles/toxicity , Xenobiotics/toxicity , Acetylcholinesterase/metabolism , Animals , Bees/enzymology , Catalase/metabolism , Enzyme Activation/drug effects , Freezing , Glutathione Transferase/metabolism , Lethal Dose 50 , Neonicotinoids , Thiamethoxam
SELECTION OF CITATIONS
SEARCH DETAIL