Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 263(Pt 1): 130272, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38373560

ABSTRACT

Bevacizumab (BVZ) was the first monoclonal antibody approved by the FDA and has shown an essential advance in the antitumor therapy of colorectal cancer (CRC), however, the systemic action of BVZ administered intravenously can trigger several adverse effects. The working hypothesis of the study was to promote the modulation of the mucoadhesion properties and permeability of the BVZ through the formation of nanoparticles (NPs) with gellan gum (GG) with subsequent surface modification with chitosan (CS). NPs comprising BVZ and GG were synthesized through polyelectrolyte complexation, yielding spherical nanosized particles with an average diameter of 264.0 ± 2.75 nm and 314.0 ± 0.01 nm, polydispersity index of 0.182 ± 0.01 e 0.288 ± 0.01, and encapsulation efficiency of 29.36 ± 0.67 e 60.35 ± 0.27 mV, for NPs without (NP_BVZ) and with surface modification (NP_BVZ + CS). The results showed a good ability of nanoparticles with surface modification to modulate the NPs biological properties.


Subject(s)
Chitosan , Nanoparticles , Polysaccharides, Bacterial , Drug Carriers , Bevacizumab/pharmacology
2.
Curr Drug Deliv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38013438

ABSTRACT

Glioblastoma multiforme is the most common and aggressive malignant tumor that affects the central nervous system, with high mortality and low survival. Glioblastoma multiforme treatment includes resection tumor surgery, followed by radiotherapy and chemotherapy adjuvants. However, the drugs used in chemotherapy present some limitations, such as the difficulty of crossing the bloodbrain barrier and resisting the cellular mechanisms of drug efflux. The use of polymeric nanoparticles has proven to be an effective alternative to circumvent such limitations, as it allows the exploration of a range of polymeric structures that can be modified in order to control the biodistribution and cytotoxic effect of the drug delivery systems. Nanoparticles are nanometric in size and allow the incorporation of targeting ligands on their surface, favoring the transposition of the blood-brain barrier and the delivery of the drug to specific sites, increasing the selectivity and safety of chemotherapy. The present review has described the characteristics of chitosan, poly(vinyl alcohol), poly(lactic-coglycolic acid), poly(ethylene glycol), poly(ß-amino ester), and poly(ε-caprolactone), which are some of the most commonly used polymers in the manufacture of nanoparticles for the treatment of glioblastoma multiforme. In addition, some of the main targeting ligands used in these nanosystems are presented, such as transferrin, chlorotoxin, albumin, epidermal growth factor, and epidermal growth factor receptor blockers, explored for the active targeting of antiglioblastoma agents.

3.
Expert Opin Drug Deliv ; 20(9): 1231-1249, 2023.
Article in English | MEDLINE | ID: mdl-37786284

ABSTRACT

INTRODUCTION: Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease. AREAS COVERED: This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration. Finally, we bring future perspectives for advances in clinical and field translation of multifunctional systems based on nano-in-microparticles. EXPERT OPINION: This article brings a new approach to exploring the use of multifunctional systems based on nano-in-microparticles for different applications, in addition, it also emphasizes the use of biomaterials in these systems and their limitations. There is currently no study in the literature that explores this approach, making a review article necessary to address this association of strategies for application in pharmaceutical technology.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Delivery Systems/methods , Biocompatible Materials , Technology, Pharmaceutical
4.
Daru ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37903944

ABSTRACT

OBJECTIVES: Veterinarians and pharmacists are familiar with the efficacy and safety aspects attributed to active pharmaceutical ingredients included in medicines, but they are rarely concerned with the safety of excipients present in medicines. Although generally recognized as safe, excipients are not chemically inert and may produce adverse events in certain animal populations. This review aims to present excipients of concern to these populations and highlight their relevance for rational veterinary pharmacotherapy. EVIDENCE ACQUISITION: A comprehensive review of the literature about the existence of adverse reactions in animals caused by pharmaceutical excipients was carried out based on an exploratory study. An overview of the correct conditions of use and safety of these excipients has also been provided, with information about their function, the proportion in which they are included in the different pharmaceutical dosage forms and the usual routes of administration. RESULTS: We identified 18 excipients considered of concern due to their potential to cause harm to the health of specific animal populations: bentonite, benzalkonium chloride, benzoic acid, benzyl alcohol, ethanol, lactose, mannitol, mineral oil, monosodium glutamate, polyethylene glycol, polysorbate, propylene glycol, sodium benzoate, sodium carboxymethylcellulose, sodium lauryl sulfate, sulfites, polyoxyethylene castor oil derivatives, and xylitol. Among the 135 manuscripts listed, only 24 referred to studies in which the substances were correctly evaluated as excipients. CONCLUSIONS: Based on the information presented in this review, the authors hope to draw the attention of professionals involved in veterinary pharmacotherapy to the existence of excipients of concern in medicines. This information contributes to rational veterinary pharmacotherapy and supports veterinary pharmacovigilance actions. We hope to shed light on the subject and encourage studies and new manuscripts that address the safety of pharmaceutical excipients to the animal population.

5.
Carbohydr Polym ; 320: 121257, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37659830

ABSTRACT

Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.


Subject(s)
Colorectal Neoplasms , Nanoparticles , Humans , Hyaluronic Acid , Medical Oncology , Polymers , Colorectal Neoplasms/drug therapy
6.
Mater Today Bio ; 20: 100671, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37273792

ABSTRACT

Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.

7.
Pharmaceutics ; 15(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36839688

ABSTRACT

Skin inflammation is a symptom of many skin diseases, such as eczema, psoriasis, and dermatitis, which cause rashes, redness, heat, or blistering. The use of natural products with anti-inflammatory properties has gained importance in treating these symptoms. Ursolic acid (UA), a promising natural compound that is used to treat skin diseases, exhibits low aqueous solubility, resulting in poor absorption and low bioavailability. Designing topical formulations focuses on providing adequate delivery via application to the skin surface. The aim of this study was to formulate and characterize lipid-surfactant-based systems for the delivery of UA. Microemulsions and liquid crystalline systems (LCs) were characterized by polarized light microscopy (PLM), rheology techniques, and textural and bioadhesive assays. PLM supported the self-assembly of these systems and elucidated their formation. Rheologic examination revealed pseudoplastic and thixotropic behavior appropriate, and assays confirmed the ability of these formulations to adhere to the skin. In vivo studies were performed, and inflammation induced by croton oil was assessed for response to microemulsions and LCs. UA anti-inflammatory activities of ~60% and 50% were demonstrated by two microemulsions and 40% and 35% by two LCs, respectively. These data support the continued development of colloidal systems to deliver UA to ameliorate skin inflammation.

8.
Int J Biol Macromol ; 227: 736-748, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36549615

ABSTRACT

Piperine is an alkaloid mostly found in the fruits of several species of the Piper genus, and its anti-inflammatory potential is already known. However, its therapeutic applications still need to be better explored due to the low aqueous solubility of this active. To overcome this drawback, the objective of this work was to evaluate the efficiency of the nanoencapsulation of the compound as well as its incorporation into hyaluronic acid/alginate-based biomembranes. Polymeric nanoparticles composed of Eudragit S100 and Poloxamer 188 were obtained by the nanoprecipitation technique, obtaining spherical nanosized particles with an average diameter of 122.1 ± 2.0 nm, polydispersity index of 0.266, and encapsulation efficiency of 76.2 %. Hyaluronic acid/sodium alginate membranes were then prepared and characterized. Regarding permeation, a slow passage rate was observed until the initial 14 h, when an exponential increase in the recovered drug concentration began to occur. The in vivo assay showed a reduction in inflammation up to 43.6 %, and no cytotoxicity was observed. The results suggested the potential of the system developed for the treatment of inflammatory skin diseases.


Subject(s)
Alkaloids , Dermatitis , Nanoparticles , Humans , Hyaluronic Acid , Alginates , Alkaloids/pharmacology , Particle Size
9.
Odontology ; 111(3): 573-579, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36414881

ABSTRACT

The aim of this research was to develop a chalcone-based endodontic irrigant for cleaning and disinfecting the root canal. Minimal inhibitory concentration (MIC) experiments in C. albicans and E. faecalis strains with different aminochalcones (AM) were carried out, and the compound that presented the best activity against both pathogens was chosen. The formulation of an endodontic irrigant was elaborated, tested in mono and dual specie biofilms. Disks were sterilized and then incubated with E. faecalis, C. albicans and E. faecalis and C. albicans mixed for 72 h for biofilm maturation. After contamination, samples were divided in 4 experimental groups and 2 positive control group as follows: Group1: Irrigant; Group2: Irrigant + AM-38; Group3: Chlorhexidine 2% (positive control) and, Group 4: 1.0% sodium hypochlorite (positive control). The samples were analyzed by CFU/ml count. The sample was taken to sonicador to remove the cells and then plated. The toxicity was determined in vitro with human gingival fibroblast cells (HGF) and in vivo using the Galleria mellonella model. Formulation showed antimicrobial activity, with MIC on C. albicans 15.6 and E. faecalis 7.8 µg/ml. Treatment with formulation in concentration 156 µg/ml significantly reduced mono or dual species biofilm formation and viability (p < 0.05). The results were significant against C. albicans and E. faecalis and did not show toxicity in cells and G. mellonella. In general, the formulation showed effective antibiofilm activity, significantly reducing microorganisms, opening paths in search of new endodontic irrigants.


Subject(s)
Candida albicans , Chalcones , Humans , Enterococcus faecalis , Chalcones/pharmacology , Root Canal Irrigants/pharmacology , Sodium Hypochlorite/pharmacology , Biofilms , Dental Pulp Cavity
10.
Curr Pharm Des ; 28(25): 2073-2088, 2022.
Article in English | MEDLINE | ID: mdl-35658888

ABSTRACT

Temozolomide (TMZ) is an imidazotetrazine prodrug used to treat glioblastoma multiforme. Its physicochemical properties and small size confer the ability to cross the blood-brain barrier. The antitumor activity depends on pH-dependent hydrolysis of the methyldiazonium cation, which is capable of methylating purine bases (O6-guanine; N7-guanine, and N3-adenine) and causing DNA damage and cell death. TMZ is more stable in acidic media (pH ≤ 5.0) than in basic media (pH ≥ 7.0) due to the protonated form that minimizes the catalytic process. Due to this, TMZ has high oral bioavailability, but it has a half-life of 1.8 h and low brain distribution (17.8%), requiring a repeated dosing regimen that limits its efficacy and increases adverse events. Drug delivery Nanosystems (DDNs) improve the physicochemical properties of TMZ and may provide controlled and targeted delivery. Therefore, DDNs can increase the efficacy and safety of TMZ. In this context, to ensure the efficiency of DDNs, analytical methods are used to evaluate TMZ pharmacokinetic parameters, encapsulation efficiency, and the release profile of DDNs. Among the methods, high-performance liquid chromatography is the most used due to its detection sensitivity in complex matrices such as tissues and plasma. Micellar electrokinetic chromatography features fast analysis and no sample pretreatment. Spectrophotometric methods are still used to determine encapsulation efficiency due to their low cost, despite their low sensitivity. This review summarizes the physicochemical and pharmacological properties of free TMZ and TMZ-loaded DDNs. In addition, this review addresses the main analytical methods employed to characterize TMZ in different matrices.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/drug therapy , Cell Line, Tumor , Glioblastoma/drug therapy , Guanine/therapeutic use , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use
11.
Curr Pharm Des ; 28(18): 1501-1512, 2022.
Article in English | MEDLINE | ID: mdl-35579160

ABSTRACT

5-Fluorouracil (5-FU) is an antimetabolite drug used for over 70 years as first-line chemotherapy to treat various types of cancer, such as head, neck, breast, and colorectal cancer. 5-FU acts mainly by inhibiting thymidylate synthase, thereby interfering with deoxyribonucleic acid (DNA) replication or by 5-FU incorporating into DNA, causing damage to the sequence of nucleotides. Being analogous to uracil, 5-FU enters cells using the same transport mechanism, where a is converted into active metabolites such as fluorouridine triphosphate (FUTP), fluorodeoxyuridine monophosphate (FdUMP), and fluorodeoxyuridine triphosphate (FdUTP). Currently, there are several nano delivery systems being developed and evaluated at the preclinical level to overcome existing limitations to 5-FU chemotherapy, including liposomes, polymeric nanoparticles, polymeric micelles, nanoemulsions, mesoporous silica nanoparticles, and solid lipid nanoparticles. Therefore, it is essential to choose and develop suitable analytical methods for the quantification of 5-FU and its metabolites (5- fluorouridine and 5-fluoro-2-deoxyuridine) in pharmaceutical and biological samples. Among the analytical techniques, chromatographic methods are commonly the most used for the quantification of 5-FU from different matrices. However, other analytical methods have also been developed for the determination of 5-FU, such as electrochemical methods, a sensitive, selective, and precise technique, in addition to having a reduced cost. Here, we first review the physicochemical properties, mechanism of action, and advances in 5-FU nanodelivery systems. Next, we summarize the current progress of other chromatographic methods described to determine 5- FU. Lastly, we discuss the advantages of electrochemical methods for the identification and quantification of 5- FU and its metabolites in pharmaceutical and biological samples.


Subject(s)
Fluorouracil , Liposomes , DNA , Fluorouracil/pharmacology , Humans , Nanoparticles
12.
Carbohydr Polym ; 271: 118436, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34364576

ABSTRACT

Polyelectrolyte complexation is a technique based on interactions between polyelectrolytes of opposite charges driven by supramolecular interactions. Although many studies address the formation of polyelectrolyte complexes (PECs), few explore strategies and tools to select the best working conditions and are often based on empirical choices. This study evaluates the influence of pH, molecular weight, and polymeric proportion on the formation of PECs based on chitosan:dextran sulfate. In addition, it assesses the approaches that study the influence of pH on the zeta potential of polymeric dispersions as a tool in the design of PECs. Results showed that nanoparticles with an excess of polycation formed aggregates, while an excess of dextran sulfate reduced the size of the particles. The graph of zeta potential as a function of pH proved to be a promising tool in the choice of polymers and a better pH condition in the development of PECs.


Subject(s)
Chitosan/chemistry , Dextran Sulfate/chemistry , Nanoparticles/chemistry , Polyelectrolytes/chemistry , Hydrogen-Ion Concentration , Particle Size , Static Electricity
13.
Int J Pharm ; 604: 120756, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34058307

ABSTRACT

One of the challenges to the success of veterinary pharmacotherapy is the limited number of drugs and dosage forms available exclusively to this market, due to the interspecies variability of animals, such as anatomy, physiology, pharmacokinetics, and pharmacodynamics. For this reason, studies in this area have become a highlight, since they are still scarce in comparison with those on human drug use. To overcome many limitations related to the bioavailability, efficacy, and safety of pharmacotherapy in animals, especially livestock and domestic animals, polymers-based drug delivery systems are promising tools if they guarantee greater selectivity and less toxicity in dosage forms. In addition, these tools may be developed according to the great interspecies variability. To contribute to these discussions, this paper provides an updated review of the major polymer-based drug delivery systems projected for veterinary use. Traditional and innovative drug delivery systems based on polymers are presented, with an emphasis on films, microparticles, micelles, nanogels, nanoparticles, tablets, implants and hydrogel-based drug delivery systems. We discuss important concepts for the veterinarian about the mechanisms of drug release and, for the pharmacist, the advantages in the development of pharmaceutical forms for the animal population. Finally, challenges and opportunities are presented in the field of pharmaceutical dosage forms for veterinary use in response to the interests of the pharmaceutical industry.


Subject(s)
Drug Delivery Systems , Nanoparticles , Animals , Biological Availability , Humans , Micelles , Polymers
14.
J Control Release ; 334: 353-366, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33901582

ABSTRACT

Colon-targeted oral delivery of drugs remains as an appealing and promising approach for the treatment of prevalent intestinal diseases (ID), such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Notwithstanding, there are numerous challenges to effective drug delivery to the colon, which requires the design of advanced strategies. Micro- and nanoparticles have received great attention as colon-targeted delivery platforms due to their reduced size and structural composition that favors the accumulation and/or residence time of drugs at the site of action and/or absorption, contributing to localized therapy. The choice by natural polysaccharides imparts key properties and advantages to the nano-in-microparticulate systems to effective colon-specific oral delivery. This review proposes to discuss the physiological barriers imposed by the gastrointestinal tract (GIT) against oral administration of drugs, as well as pathological factors and challenges of the ID for oral delivery of colon-targeted systems. We then provide an updated progress about polysaccharides-based colon-targeted drug delivery systems, including microparticulate, nanoparticulate and nano-in-microparticulate systems, highlighting their key properties, advantages and limitations to achieving targeted delivery and efficacious therapy within the colon. Lastly, we provide future perspectives, towards advances in the field and clinical translation of colon-targeted oral delivery systems for ID therapy.


Subject(s)
Drug Delivery Systems , Inflammatory Bowel Diseases , Administration, Oral , Colon , Humans , Inflammatory Bowel Diseases/drug therapy , Polysaccharides
15.
Int J Pharm ; 590: 119867, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32919001

ABSTRACT

Vaginal infections represent a clear women health problem due to the several issues as high recurrence rate, drug resistence and emergence of persistent strains. However, achieving improvements in therapeutic efficacy by using conventional formulations intended to vaginal drug delivery remains as a challenge due to anatomy and physiology of the vagina, since the secretion and renewal of vaginal fluids contribute to the removal of the dosage form. Hydrogels have been widely exploited aiming to achieve drug delivery directly into vaginal mucosa for local therapy due to their attractive features as increased residence time of the drug at the action site and control of drug release rates. Some polymers can aggregate specific properties to hydrogels as mucoadhesive, stimuli-responsive and antimicrobial, improving their interaction with the biological interface and therapeutic response. In this review, we highlight the advances, advantages and challenges of the hydrogels as drug and/or nanocarrier vehicles intended to the treatment of vaginal infections, emphasizing also the polymers and their properties more explored on the design these systems to improve the therapeutic effect on the vaginal tissue. In addition, this review can contribute for better exploitation these systems in search of new local treatments for bacterial vaginosis, candidiasis and trichomoniasis.


Subject(s)
Hydrogels , Vaginosis, Bacterial , Administration, Intravaginal , Drug Delivery Systems , Female , Humans , Vagina , Vaginosis, Bacterial/drug therapy
16.
Drug Deliv Transl Res ; 10(6): 1788-1809, 2020 12.
Article in English | MEDLINE | ID: mdl-32803562

ABSTRACT

The discovery of new drugs and dosage forms for the treatment of neglected tropical diseases, such as human and animal leishmaniasis, is gaining interest in the chemical, biological, pharmaceutical, and medical fields. Many pharmaceutical companies are exploring the use of old drugs to establishing new drug dosage forms and drug delivery systems, in particular for use in neglected diseases. The formation of complexes with cyclodextrins is widely used to improve the stability, solubility, and bioavailability of pharmaceutical drugs, as well as reduce both the toxicity and side effects of many of these drugs. The aim of this study was to characterize solid compounds obtained from the association between furazolidone (FZD) and ß-cyclodextrin (ß-CD) or hydroxypropyl-ß-cyclodextrin (HP-ß-CD). The solid compounds were prepared in molar ratios of 1:1 and 1:2 (drug:CD) by kneading and lyophilization. Molecular docking was used to predict the preferred relative orientation of FZD when bound in both studied cyclodextrins. The resulting solid compounds were qualitatively characterized by scanning electron microscopy (SEM), thermal analysis (DSC and TG/DTG), X-ray diffraction (XRD), Raman spectroscopy with image mapping (Raman mapping), and 13C nuclear magnetic resonance spectroscopy (13C NMR) in the solid state. The cytotoxicity of the compounds against THP-1 macrophages and the 50% growth inhibition (IC50) against Leishmania amazonensis promastigote forms were subsequently investigated using in vitro techniques. For all of the solid compounds obtained, the existence of an association between FZD and CD were confirmed by one or more characterization techniques (TG/DTG, DSC, SEM, XRD, RAMAN, and 13C NMR), particularly by a significant decrease in the crystallinity of these materials and a reduction in the melting enthalpy associated with furazolidone thermal events. The formation of more effective interactions occurred in the compounds prepared by lyophilization, in a 1:2 molar ratio of the two CDs studied. However, the formation of an inclusion complex was confirmed only for the solid compound obtained from HP-ß-CD prepared by lyophilization (LHFZD1:2). The absence of cytotoxicity on the THP-1 macrophage lineages and the leishmanicidal activity were confirmed for all compounds. MHFZD1:2 and LHFZD1:2 were found to be very active against promastigote forms of L. amazonensis, while all others were considered only active. These results are in line with the literature, demonstrating the existence of biological activity for associations between drugs and CDs in the form of complexes and non-complexes. All solid compounds obtained were found to be promising for use as leishmanicidal agents against promastigote forms of L. amazonensis.


Subject(s)
Antiprotozoal Agents/pharmacology , Furazolidone , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin , Calorimetry, Differential Scanning , Leishmania/drug effects , Molecular Docking Simulation , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
17.
Int J Pharm ; 580: 119214, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32165220

ABSTRACT

To ensure success in the development and manufacturing of nanomedicines requires forces of an interdisciplinary team that combines medicine, engineering, chemistry, biology, material and pharmaceutical areas. Numerous researches in nanotechnology applied to human health are available in the literature. Althought, the lack of nanotechnology-based pharmaceuticals products for use exclusively in veterinary pharmacotherapy creates a potential area for the development of innovative products, as these animal health studies are still scarce when compared to studies in human pharmacotherapy. Nano-dosage forms can ensure safer and more effective pharmacotherapy for animals and can more be safer for the consumers of livestock products, once they can offer higher selectivity and smaller toxicity associated with lower doses of the drugs. In addition, the development and production of nanomedicines may consolidate the presence of pharmaceutical laboratories in the global market and can generate greater profit in a competitive business environment. To contribute to this scenario, this article provides a review of the main nanocarriers used in nanomedicines for veterinary use, with emphasis on liposomes, nanoemulsions, micelles, lipid nanoparticles, polymeric nanoparticles, mesoporous silica nanoparticles, metallic nanoparticles and dendrimers, and the state of the art of application of these nanocarriers in drug delivery systems to animal use. Finnaly, the major challenges involved in research, scale-up studies, large-scale manufacture, analytical methods for quality assessment, and regulatory aspects of nanomedicines were discussed.


Subject(s)
Drug Carriers/chemical synthesis , Nanomedicine/methods , Nanoparticles/chemistry , Veterinary Drugs/chemical synthesis , Animals , Drug Carriers/administration & dosage , Humans , Nanomedicine/trends , Nanoparticles/administration & dosage , Veterinary Drugs/administration & dosage
18.
Food Res Int ; 119: 499-509, 2019 05.
Article in English | MEDLINE | ID: mdl-30884682

ABSTRACT

The current study aimed obtaining antimicrobial sachets that could be used as preservatives for foods. Basil (BEO) and Pimenta dioica (PDEO) essential oils (EOs) were analyzed by GC-FID and GC-MS and tested against the foodborne bacteria S. aureus, E. coli, L. monocytogenes, P. aeruginosa, S. Enteritidis, and the food-spoilage mold B. nivea. Then, inclusion complexes (ICs) with EOs and ß-cyclodextrin (ß-CD) were prepared as a strategy to reduce volatility and increase the release time of EOs. Eight ICs were prepared by kneading and freeze-drying methods, in two molar ratios, and have been characterized by complementary methods: FT-IR, thermal analysis (DSC and TG/DTG), powder XRD, and solid state 13C NMR. In vitro antimicrobial activities of ICs, both dispersed in agar and loaded in sachets, have also been investigated. Complexation was confirmed for all samples. PDEO-based ICs prepared by kneading method, at both molar ratios, displayed better in vitro antimicrobial activity. The obtained results strongly suggest a potential application of these ICs as natural antimicrobials.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Food Preservatives/chemistry , Food Preservatives/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Brazil , Escherichia coli/drug effects , Food Preservation/methods , Freeze Drying , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Ocimum basilicum/chemistry , Pimenta/chemistry , Staphylococcus aureus/drug effects , X-Ray Diffraction
19.
Res Vet Sci ; 119: 143-153, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29935407

ABSTRACT

Recently, there have been numerous cases of leishmaniasis reported in different Brazilian states. The use of furazolidone (FZD) to treat leishmaniasis has been previously described; however, the drug is associated with adverse effects such as anorexia, weight loss, incoordination, and fatigue in dogs. Thus, in the present study, we prepared and evaluated inclusion complexes between FZD and ß-cyclodextrin (ß-CD) to guarantee increased drug solubility and reduce the toxicity associated with high doses. The FZD:ß-CD complexes were prepared by two different techniques (kneading and lyophilization) prior to incorporation in an oral pharmaceutical dosage form. Formation of the complexes was confirmed using appropriate physicochemical methods. Antileishmanial activity against L. amazonensis was tested in vitro via a microplate assay using resazurin dye and cytotoxicity was determined using the fibroblast L929 lineage. Solubility studies showed the formation of complexes with complexation efficiencies lower than 100%. Physicochemical analysis revealed that FZD was inserted into the ß-CD cavity after complexation by both methods. Biological in vitro evaluations demonstrated that free FZD and the FZD:ß-CD complexes presented significant leishmanicidal activity against L. amazonensis with IC50 values of 6.16 µg/mL and 1.83 µg/mL for the complexes prepared by kneading and lyophilization, respectively. The data showed that these complexes reduced the survival of promastigotes and presented no toxicity for tested cells. Our results indicate that the new compounds could be a cost-effective alternative for use in the pharmacotherapy of leishmaniasis in dogs infected with L. amazonensis.


Subject(s)
Antiprotozoal Agents/pharmacology , Furazolidone/pharmacology , Leishmania mexicana/drug effects , beta-Cyclodextrins/pharmacology , Animals , Antiprotozoal Agents/adverse effects , Brazil , Furazolidone/adverse effects , Parasitic Sensitivity Tests , Treatment Outcome , beta-Cyclodextrins/adverse effects
20.
J Mater Sci Mater Med ; 29(5): 67, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29748753

ABSTRACT

Cooperation between researchers in the areas of medical, pharmaceutical and materials science has facilitated the development of pharmaceutical dosage forms that elicit therapeutic effects and protective action with a single product. In addition to optimizing pharmacologic action, such dosage forms provide greater patient comfort and increase success and treatment compliance. In the present work, we prepared semipermeable bioactive electrospun fibers for use as wound dressings containing silver sulfadiazine complexed with ß-cyclodextrin in a poly(Ɛ-caprolactone) nanofiber matrix aiming to reduce the direct contact between silver and skin and to modulate the drug release. Wound dressings were prepared by electrospinning, and were subjected to ATR-FT-IR and TG/DTG assays to evaluate drug stability. The hydrophilicity of the fibrous nanostructure in water and PBS buffer was studied by goniometry. Electrospun fibers permeability and swelling capacity were assessed, and a dissolution test was performed. In vitro biological tests were realized to investigate the biological compatibility and antimicrobial activity. We obtained flexible matrices that were each approximately 1.0 g in weight. The electrospun fibers were shown to be semipermeable, with water vapor transmission and swelling indexes compatible with the proposed objective. The hydrophilicity was moderate. Matrices containing pure drug modulated drug release adequately during 24 h but presented a high hemolytic index. Complexation promoted a decrease in the hemolytic index and in the drug release but did not negatively impact antimicrobial activity. The drug was released predominantly by diffusion. These results indicate that electrospun PCL matrices containing ß-cyclodextrin/silver sulfadiazine inclusion complexes are a promising pharmaceutical dosage form for wound healing.


Subject(s)
Drug Carriers/chemical synthesis , Nanofibers/chemistry , Polyesters/chemistry , Silver Sulfadiazine/administration & dosage , Wound Healing , beta-Cyclodextrins/administration & dosage , Bandages , Blood Cells/drug effects , Blood Cells/physiology , Chemical Phenomena , Dosage Forms , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Liberation , Drug Stability , Electroplating , Hemolysis/drug effects , Humans , Materials Testing , Microbial Sensitivity Tests , Silver Sulfadiazine/chemistry , Thermogravimetry , Wound Healing/drug effects , beta-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...