Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Biol ; 47(2): e20220383, 2024.
Article in English | MEDLINE | ID: mdl-38885260

ABSTRACT

To explore the diversity of scenarios in nature, animals have evolved tools to interact with different environmental conditions. Chemoreceptors are an important interface component and among them, olfactory receptors (ORs) and gustatory receptors (GRs) can be used to find food and detect healthy resources. Drosophila is a model organism in many scientific fields, in part due to the diversity of species and niches they occupy. The contrast between generalists and specialists Drosophila species provides an important model for studying the evolution of chemoreception. Here, we compare the repertoire of chemoreceptors of different species of Drosophila with that of D. incompta, a highly specialized species whose ecology is restricted to Cestrum flowers, after reporting the preferences of D. incompta to the odor of Cestrum flowers in olfactory tests. We found evidence that the chemoreceptor repertoire in D. incompta is smaller than that presented by species in the Sophophora subgenus. Similar patterns were found in other non-Sophophora species, suggesting the presence of underlying phylogenetic trends. Nevertheless, we also found autapomorphic gene losses and detected some genes that appear to be under positive selection in D. incompta, suggesting that the specific lifestyle of these flies may have shaped the evolution of individual genes in each of these gene families.

2.
Ecology ; 104(3): e3900, 2023 03.
Article in English | MEDLINE | ID: mdl-36315032

ABSTRACT

Encounters between flowers and invertebrates are key events for the functioning of tropical forests. Assessing the structure of networks composed of the interactions between those partners leads to a better understanding of ecosystem functioning and the effects of environmental factors on ecological processes. Gathering such data is, however, costly and time-consuming, especially in the highly diverse tropics. We aimed to provide a comprehensive repository of available flower-invertebrate interaction information for the Atlantic Forest, a South American tropical forest domain. Data were obtained from published works and "gray literature," such as theses and dissertations, as well as self-reports by co-authors. The data set has ~18,000 interaction records forming 482 networks, each containing between one and 1061 interaction links. Each network was sampled for about 200 h or less, with few exceptions. A total of 641 plant genera within 136 different families and 39 orders were reported, with the most abundant and rich families being Asteraceae, Fabaceae, and Rubiaceae. Invertebrates interacting with these plants were all arthropods from 10 orders, 129 families, and 581 genera, comprising 2419 morphotypes (including 988 named species). Hymenoptera was the most abundant and diverse order, with at least six times more records than the second-ranked order (Lepidoptera). The complete data set shows Hymenoptera interacting with all plant orders and also shows Diptera, Lepidoptera, Coleoptera, and Hemiptera to be important nodes. Among plants, Asterales and Fabales had the highest number of interactions. The best sampled environment was forest (~8000 records), followed by pastures and crops. Savanna, grasslands, and urban environments (among others) were also reported, indicating a wide range of approaches dedicated to collecting flower-invertebrate interaction data in the Atlantic Forest domain. Nevertheless, most reported data were from forest understory or lower strata, indicating a knowledge gap about flower-invertebrate interactions at the canopy. Also, access to remote regions remains a limitation, generating sampling bias across the geographical range of the Atlantic Forest. Future studies in these continuous and hard-to-access forested areas will yield important new information regarding the interactions between flowers and invertebrates in the Atlantic Forest. There are no copyright restrictions on the data set. Please cite this data paper if the data are used in publications and teaching events.


Subject(s)
Hymenoptera , Lepidoptera , Humans , Animals , Ecosystem , Invertebrates , Forests , Plants , Flowers , Pollination
3.
PLoS One ; 14(10): e0220539, 2019.
Article in English | MEDLINE | ID: mdl-31622354

ABSTRACT

Transposable elements (TEs) have the main role in shaping the evolution of genomes and host species, contributing to the creation of new genes and promoting rearrangements frequently associated with new regulatory networks. Support for these hypotheses frequently results from studies with model species, and Drosophila provides a great model organism to the study of TEs. Micropia belongs to the Ty3/Gypsy group of long terminal repeats (LTR) retroelements and comprises one of the least studied Drosophila transposable elements. In this study, we assessed the evolutionary history of Micropia within Drosophilidae, while trying to assist in the classification of this TE. At first, we performed searches of Micropia presence in the genome of natural populations from several species. Then, based on searches within online genomic databases, we retrieved Micropia-like sequences from the genomes of distinct Drosophilidae species. We expanded the knowledge of Micropia distribution within Drosophila species. The Micropia retroelements we detected consist of an array of divergent sequences, which we subdivided into 20 subfamilies. Even so, a patchy distribution of Micropia sequences within the Drosophilidae phylogeny could be identified, with incongruences between the species phylogeny and the Micropia phylogeny. Comparing the pairwise synonymous distance (dS) values between Micropia and three host nuclear sequences, we found several cases of unexpectedly high levels of similarity between Micropia sequences in divergent species. All these findings provide a hypothesis to the evolution of Micropia within Drosophilidae, which include several events of vertical and horizontal transposon transmission, associated with ancestral polymorphisms and recurrent Micropia sequences diversification.


Subject(s)
Drosophilidae/classification , Drosophilidae/genetics , Evolution, Molecular , Genome, Insect , Retroelements , Animals , Databases, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...