Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Mol Biol Rep ; 50(12): 10657-10662, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962704

ABSTRACT

BACKGROUND: The COI mitochondrial gene has been chosen as the "DNA barcode in animals" and the large quantity of genetic information in public databanks gives solid support for the use of DNA barcoding as a promising tool for the development of a specific molecular detection system. METHODS AND RESULTS: The present study aimed to develop a Specific Molecular Detection System (SMDS: FishDNAIDs) (primers and probe sets) for the following four target species: Prochilodus nigricans, Potamorhina altamazonica, Psectrogaster rutiloides and Triportheus angulatus, in qPCR assays. In silico and in vitro tests (using gDNA) were performed to test these sets. The database generated contained the cytochrome c oxidase subunit I (COI) nucleotide sequence for 183 specimens of Characiformes, distributed in 34 species representing eight families. In silico, primers designed for the target species amplified different species from the same genus, except for P. rutiloides, which amplified only the target species. In the in vitro test, using the SYBRGreentm and TaqMan® fluorescence systems, both sets detected the respective target species (P. nigricans, P. altamazonica, P. rutiloides and T. angulatus). In the qPCR assays using SYBRGreentm, species considered to be related were also detected, in addition to the target species, with the exception of P. amazonica and P. essequibensis (correlated to P. rutiloides). All target species were detected in the qPCR assays using the TaqMan® system; however, with the SMDS PALT, the target species P. altamazonica was detected with low CT values (22.21 ± 0.17) as well as the correlates of P. latior and P. pristigaster, though with high CT values (23.51 ± 0.19 and 30.21 ± 0.95). This assay uniquely identifies known adult tissue samples from all four species. CONCLUSIONS: The primers and probe sets developed can act as powerful tools for detecting the target Characiformes species.


Subject(s)
Characiformes , Humans , Animals , Characiformes/genetics , DNA Barcoding, Taxonomic/methods , Brazil , DNA , DNA Primers , Phylogeny
2.
PeerJ ; 6: e5080, 2018.
Article in English | MEDLINE | ID: mdl-29942707

ABSTRACT

Understanding environmental biodiversity drivers in freshwater systems continues to be a fundamental challenge in studies of their fish assemblages. The present study seeks to determine the degree to which landscape variables of Amazonian floodplain lakes influences fish assemblages in these environments. Fish species richness was estimated in 15 Amazonian floodplain lakes during the high and low-water phases and correlated with the areas of four inundated wetland classes: (i) open water, (ii) flooded herbaceous, (iii) flooded shrubs and (iv) flooded forest estimated in different radius circular areas around each sampling site. Data were analyzed using generalized linear models with fish species richness, total and guilds as the dependent variable and estimates of buffered landscape areas as explanatory variables. Our analysis identified the significance of landscape variables in determining the diversity of fish assemblages in Amazonian floodplain lakes. Spatial scale was also identified as a significant determinant of fish diversity as landscape effects were more evident at larger spatial scales. In particular, (1) total species richness was more sensitive to variations in the landscape areas than number of species within guilds and (2) the spatial extent of the wetland class of shrubs was consistently the more influential on fish species diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...