Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Leukoc Biol ; 109(3): 675-681, 2021 03.
Article in English | MEDLINE | ID: mdl-32578908

ABSTRACT

Approximately 15-40% of people living with HIV develop HIV-associated neurocognitive disorders, HAND, despite successful antiretroviral therapy. There are no therapies to treat these disorders. HIV enters the CNS early after infection, in part by transmigration of infected monocytes. Currently, there is a major opioid epidemic in the United States. Opioid use disorder in the context of HIV infection is important because studies show that opioids exacerbate HIV-mediated neuroinflammation that may contribute to more severe cognitive deficits. Buprenorphine is an opioid derivate commonly prescribed for opiate agonist treatment. We used the EcoHIV mouse model to study the effects of buprenorphine on cognitive impairment and to correlate these with monocyte migration into the CNS. We show that buprenorphine treatment prior to mouse EcoHIV infection prevents the development of cognitive impairment, in part, by decreased accumulation of monocytes in the brain. We propose that buprenorphine has a novel therapeutic benefit of limiting the development of neurocognitive impairment in HIV-infected opioid abusers as well as in nonabusers, in addition to decreasing the use of harmful opioids. Buprenorphine may also be used in combination with HIV prevention strategies such as pre-exposure prophylaxis because of its safety profile.


Subject(s)
AIDS Dementia Complex/prevention & control , Buprenorphine/therapeutic use , HIV Infections/drug therapy , AIDS Dementia Complex/complications , AIDS Dementia Complex/virology , Animals , Antigens, Ly/metabolism , Brain/pathology , Buprenorphine/pharmacology , Chronic Disease , Cognitive Dysfunction/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/virology , Disease Models, Animal , Inflammation/pathology , Male , Mice, Inbred C57BL , Monocytes/drug effects , Phenotype , Viral Load/drug effects
2.
PLoS One ; 12(6): e0179882, 2017.
Article in English | MEDLINE | ID: mdl-28640909

ABSTRACT

Despite the success of cART, greater than 50% of HIV infected people develop cognitive and motor deficits termed HIV-associated neurocognitive disorders (HAND). Macrophages are the major cell type infected in the CNS. Unlike for T cells, the virus does not kill macrophages and these long-lived cells may become HIV reservoirs in the brain. They produce cytokines/chemokines and viral proteins that promote inflammation and neuronal damage, playing a key role in HIV neuropathogenesis. HIV Tat is the transactivator of transcription that is essential for replication and transcriptional regulation of the virus and is the first protein to be produced after HIV infection. Even with successful cART, Tat is produced by infected cells. In this study we examined the role of the HIV Tat protein in the regulation of gene expression in human macrophages. Using THP-1 cells, a human monocyte/macrophage cell line, and their infection with lentivirus, we generated stable cell lines that express Tat-Flag. We performed ChIP-seq analysis of these cells and found 66 association sites of Tat in promoter or coding regions. Among these are C5, CRLF2/TSLPR, BDNF, and APBA1/Mint1, genes associated with inflammation/damage. We confirmed the association of Tat with these sequences by ChIP assay and expression of these genes in our THP-1 cell lines by qRT-PCR. We found that HIV Tat increased expression of C5, APBA1, and BDNF, and decreased CRLF2. The K50A Tat-mutation dysregulated expression of these genes without affecting the binding of the Tat complex to their gene sequences. Our data suggest that HIV Tat, produced by macrophage HIV reservoirs in the brain despite successful cART, contributes to neuropathogenesis in HIV-infected people.


Subject(s)
AIDS Dementia Complex/immunology , Gene Expression Regulation , Macrophages/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , AIDS Dementia Complex/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Brain-Derived Neurotrophic Factor/metabolism , Cell Differentiation , Cell Line , Complement C5/metabolism , Humans , Macrophages/cytology , Macrophages/virology , Nerve Tissue Proteins/metabolism , Receptors, Cytokine/metabolism , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/genetics
3.
Curr HIV Res ; 14(5): 417-430, 2016.
Article in English | MEDLINE | ID: mdl-27009099

ABSTRACT

BACKGROUND: HIV-1 enters the CNS within two weeks after peripheral infection and results in chronic neuroinflammation that leads to HIV associated neurocognitive disorders (HAND) in more than 50% of infected people. HIV enters the CNS by transmigration of infected monocytes across the blood brain barrier. Intravenous drug abuse is a major risk factor for HIV-1 infection, and opioids have been shown to alter the progression and severity of HAND. Methadone and buprenorphine are opioid derivates that are used as opioid maintenance therapies. They are commonly used to treat opioid dependency in HIV infected substance abusers, but their effects on monocyte migration relevant to the development of cognitive impairment are not well characterized. CONCLUSION: Here, we will discuss the effects of opioids and opioid maintenance therapies on the inflammatory functions of monocytes and macrophages that are related to the development of neuroinflammation in the context of HIV infection.


Subject(s)
AIDS Dementia Complex/physiopathology , Analgesics, Opioid/administration & dosage , HIV Infections/complications , Maintenance Chemotherapy , Narcotic Antagonists/administration & dosage , Narcotics/administration & dosage , Substance Abuse, Intravenous/complications , Blood-Brain Barrier , Buprenorphine/administration & dosage , Cell Movement , Humans , Methadone/administration & dosage , Monocytes/virology , Substance Abuse, Intravenous/drug therapy
4.
J Neuroinflammation ; 13(1): 54, 2016 Mar 02.
Article in English | MEDLINE | ID: mdl-26934876

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorders (HAND) are a major complication in at least half of the infected population despite effective antiretroviral treatment and immune reconstitution. HIV-associated CNS damage is not correlated with active viral replication but instead is associated with mechanisms that regulate inflammation and neuronal compromise. Our data indicate that one of these mechanisms is mediated by gap junction channels and/or hemichannels. Normally, gap junction channels shutdown under inflammatory conditions, including viral diseases. However, HIV infection upregulates Connexin43 (Cx43) expression and maintains gap junctional communication by unknown mechanism(s). METHODS: Human primary astrocytes were exposed to several HIV proteins as well as to HIV, and expression and function of Connexin43- and Connexin30-containing channels were determined by western blot, immunofluorescence, microinjection of a fluorescent tracer and chromatin immunoprecipitation (ChIP). RESULTS: Here, we demonstrate that HIV infection increases Cx43 expression in vivo. HIV-tat, the transactivator of the virus, and no other HIV proteins tested, increases Cx43 expression and maintains functional gap junctional communication in human astrocytes. Cx43 upregulation is mediated by binding of the HIV-tat protein to the Cx43 promoter, but not to the Cx30 promoter, resulting in increased Cx43 messenger RNA (mRNA) and protein as well as gap junctional communication. CONCLUSIONS: We propose that HIV-tat contributes to the spread of intracellular toxic signals generated in a few HIV-infected cells into surrounding uninfected cells by upregulating gap junctional communication. In the current antiretroviral era, where HIV replication is often completely suppressed, viral factors such as HIV-tat are still produced and released from infected cells. Thus, blocking the effects of HIV-tat could result in new strategies to reduce the damaging consequences of HIV infection of the CNS.


Subject(s)
AIDS-Associated Nephropathy/metabolism , Astrocytes/metabolism , Connexin 43/biosynthesis , tat Gene Products, Human Immunodeficiency Virus/pharmacology , AIDS-Associated Nephropathy/pathology , Astrocytes/drug effects , Brain/pathology , Cell Communication/drug effects , Cells, Cultured , Chromatin Immunoprecipitation , Connexin 43/genetics , Gap Junctions/drug effects , Humans , RNA, Small Interfering/genetics
5.
Plant Mol Biol Report ; 33: 624-637, 2015.
Article in English | MEDLINE | ID: mdl-26696694

ABSTRACT

Salicylic acid (SA) is a key hormone that mediates gene transcriptional reprogramming in the context of the defense response to stress. GRXC9, coding for a CC-type glutaredoxin from Arabidopsis, is an SA-responsive gene induced early and transiently by an NPR1-independent pathway. Here, we address the mechanism involved in this SA-dependent pathway, using GRXC9 as a model gene. We first established that GRXC9 expression is induced by UVB exposure through this pathway, validating its activation in a physiological stress condition. GRXC9 promoter analyses indicate that SA controls gene transcription through two activating sequence-1 (as-1)-like elements located in its proximal region. TGA2 and TGA3, but not TGA1, are constitutively bound to this promoter region. Accordingly, the transient recruitment of RNA polymerase II to the GRXC9 promoter, as well as the transient accumulation of gene transcripts detected in SA-treated WT plants, was abolished in a knockout mutant for the TGA class II factors. We conclude that constitutive binding of TGA2 is essential for controlling GRXC9 expression, while binding of TGA3 in a lesser extent contributes to this regulation. Finally, overexpression of GRXC9 indicates that the GRXC9 protein negatively controls its own gene expression, forming part of the complex bound to the as-1-containing promoter region. These findings are integrated in a model that explains how SA controls transcription of GRXC9 in the context of the defense response to stress.

6.
J Immunol ; 194(7): 3246-58, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25716997

ABSTRACT

Despite successful combined antiretroviral therapy, ∼ 60% of HIV-infected people exhibit HIV-associated neurocognitive disorders (HAND). CCL2 is elevated in the CNS of infected people with HAND and mediates monocyte influx into the CNS, which is critical in neuroAIDS. Many HIV-infected opiate abusers have increased neuroinflammation that may augment HAND. Buprenorphine is used to treat opiate addiction. However, there are few studies that examine its impact on HIV neuropathogenesis. We show that buprenorphine reduces the chemotactic phenotype of monocytes. Buprenorphine decreases the formation of membrane projections in response to CCL2. It also decreases CCL2-induced chemotaxis and mediates a delay in reinsertion of the CCL2 receptor, CCR2, into the cell membrane after CCL2-mediated receptor internalization, suggesting a mechanism of action of buprenorphine. Signaling pathways in CCL2-induced migration include increased phosphorylation of p38 MAPK and of the junctional protein JAM-A. We show that buprenorphine decreases these phosphorylations in CCL2-treated monocytes. Using DAMGO, CTAP, and Nor-BNI, we demonstrate that the effect of buprenorphine on CCL2 signaling is opioid receptor mediated. To identify additional potential mechanisms by which buprenorphine inhibits CCL2-induced monocyte migration, we performed proteomic analyses to characterize additional proteins in monocytes whose phosphorylation after CCL2 treatment was inhibited by buprenorphine. Leukosialin and S100A9 were identified and had not been shown previously to be involved in monocyte migration. We propose that buprenorphine limits CCL2-mediated monocyte transmigration into the CNS, thereby reducing neuroinflammation characteristic of HAND. Our findings underscore the use of buprenorphine as a therapeutic for neuroinflammation as well as for addiction.


Subject(s)
Chemokine CCL2/metabolism , Chemotaxis, Leukocyte/immunology , Monocytes/immunology , Monocytes/metabolism , Analgesics, Opioid/pharmacology , Buprenorphine/pharmacology , Cell Adhesion Molecules/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Chemotaxis, Leukocyte/drug effects , Humans , Monocytes/drug effects , Phenotype , Phosphopeptides/metabolism , Phosphorylation , Proteome , Proteomics , Receptors, CCR2/metabolism , Receptors, Cell Surface/metabolism , Receptors, Opioid/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
7.
J Neuroinflammation ; 9: 203, 2012 Aug 18.
Article in English | MEDLINE | ID: mdl-22901451

ABSTRACT

BACKGROUND: Perivascular macrophages and microglia are critical to CNS function. Drugs of abuse increase extracellular dopamine in the CNS, exposing these cells to elevated levels of dopamine. In rodent macrophages and human T-cells, dopamine was shown to modulate cellular functions through activation of dopamine receptors and other dopaminergic proteins. The expression of these proteins and the effects of dopamine on human macrophage functions had not been studied. METHODS: To study dopaminergic gene expression, qRT-PCR was performed on mRNA from primary human monocyte derived macrophages (MDM). Expression and localization of dopaminergic proteins was examined by immunoblotting isolated plasma membrane, total membrane and cytosolic proteins from MDM. To characterize dopamine-mediated changes in cytokine production in basal and inflammatory conditions, macrophages were treated with different concentrations of dopamine in the presence or absence of LPS and cytokine production was assayed by ELISA. Statistical significance was determined using two-tailed Students' T-tests or Wilcoxen Signed Rank tests. RESULTS: These data show that MDM express mRNA for all five subtypes of dopamine receptors, and that dopamine receptors 3 and 4 are expressed on the plasma membrane. MDM also express mRNA for the dopamine transporter (DAT), vesicular monoamine transporter 2 (VMAT2), tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC). DAT is expressed on the plasma membrane, VMAT2 on cellular membranes and TH and AADC are in the cytosol. Dopamine also alters macrophage cytokine production in both untreated and LPS-treated cells. Untreated macrophages show dopamine mediated increases IL-6 and CCL2. Macrophages treated with LPS show increased IL-6, CCL2, CXCL8 and IL-10 and decreased TNF-α. CONCLUSIONS: Monocyte derived macrophages express dopamine receptors and other dopaminergic proteins through which dopamine may modulate macrophage functions. Thus, increased CNS dopamine levels due to drug abuse may exacerbate the development of neurological diseases including Alzheimer's disease and HIV associated neurological disorders.


Subject(s)
Dopamine/metabolism , Macrophages/metabolism , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dopamine/pharmacology , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation/drug effects , Humans , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Plasma/cytology , Plasma/metabolism , RNA, Messenger/metabolism , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Subcellular Fractions/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
8.
J Biol Chem ; 285(38): 29546-55, 2010 Sep 17.
Article in English | MEDLINE | ID: mdl-20639201

ABSTRACT

Dynamic regulation of cell adhesion receptors is required for proper cell migration in embryogenesis, tissue repair, and cancer. Integrins and Syndecan4 (SDC4) are the main cell adhesion receptors involved in focal adhesion formation and are required for cell migration. SDC4 interacts biochemically and functionally with components of the Wnt pathway such as Frizzled7 and Dishevelled. Non-canonical Wnt signaling, particularly components of the planar cell polarity branch, controls cell adhesion and migration in embryogenesis and metastatic events. Here, we evaluate the effect of this pathway on SDC4. We have found that Wnt5a reduces cell surface levels and promotes ubiquitination and degradation of SDC4 in cell lines and dorsal mesodermal cells from Xenopus gastrulae. Gain- and loss-of-function experiments demonstrate that Dsh plays a key role in regulating SDC4 steady-state levels. Moreover, a SDC4 deletion construct that interacts inefficiently with Dsh is resistant to Wnt5a-induced degradation. Non-canonical Wnt signaling promotes monoubiquitination of the variable region of SDC4 cytoplasmic domain. Mutation of these specific residues abrogates ubiquitination and results in increased SDC4 steady-state levels. This is the first example of a cell surface protein ubiquitinated and degraded in a Wnt/Dsh-dependent manner.


Subject(s)
Syndecan-4/metabolism , Wnt Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Dishevelled Proteins , Electrophoresis, Polyacrylamide Gel , Gastrula/metabolism , Humans , Immunoprecipitation , Microscopy, Fluorescence , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Syndecan-4/genetics , Ubiquitination , Wnt Proteins/genetics , Wnt-5a Protein , Xenopus , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
9.
Dev Biol ; 329(2): 338-49, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19303002

ABSTRACT

Extracellular regulation of growth factor signaling is a key event for embryonic patterning. Heparan sulfate proteoglycans (HSPG) are among the molecules that regulate this signaling during embryonic development. Here we study the function of syndecan1 (Syn1), a cell-surface HSPG expressed in the non-neural ectoderm during early development of Xenopus embryos. Overexpression of Xenopus Syn1 (xSyn1) mRNA is sufficient to reduce BMP signaling, induce chordin expression and rescue dorso-ventral patterning in ventralized embryos. Experiments using chordin morpholinos established that xSyn1 mRNA can inhibit BMP signaling in the absence of chordin. Knockdown of xSyn1 resulted in a reduction of BMP signaling and expansion of the neural plate with the concomitant reduction of the non-neural ectoderm. Overexpression of xSyn1 mRNA in xSyn1 morphant embryos resulted in a biphasic effect, with BMP being inhibited at high concentrations and activated at low concentrations of xSyn1. Interestingly, the function of xSyn1 on dorso-ventral patterning and BMP signaling is specific for this HSPG. In summary, we report that xSyn1 regulates dorso-ventral patterning of the ectoderm through modulation of BMP signaling.


Subject(s)
Body Patterning/physiology , Bone Morphogenetic Proteins/metabolism , Ectoderm/embryology , Signal Transduction/physiology , Syndecan-1/physiology , Xenopus laevis/embryology , Animals , Base Sequence , DNA Primers , RNA, Messenger/genetics , RNA, Small Interfering , Syndecan-1/genetics
10.
Crit Rev Eukaryot Gene Expr ; 18(2): 163-72, 2008.
Article in English | MEDLINE | ID: mdl-18304030

ABSTRACT

Vitamin D is a principal modulator of skeletal gene expression, thus necessitating an understanding of interfaces between the activity of this steroid hormone and regulatory cascades that are functionally linked to the regulation of skeletal genes. Physiologic responsiveness requires combinatorial control, whereas co-regulatory proteins determine the specificity of biologic responsiveness to physiologic cues. It is becoming increasingly evident that regulatory complexes containing the vitamin D receptor are dynamic rather than static. Temporal and spatial modifications in the composition of these complexes provide a mechanism for integrating regulatory signals to support positive or negative control through synergism and antagonism. Compartmentalization of components of vitamin D control in nuclear microenvironments supports the integration of regulatory activities, perhaps by establishing thresholds for protein activity in time frames that are consistent with the execution of regulatory signaling.


Subject(s)
Bone Development/genetics , Gene Expression Regulation, Developmental , Vitamin D/physiology , Animals , Cell Nucleus/metabolism , Humans , Models, Biological , Multiprotein Complexes/physiology , Transcription Factors/physiology
11.
J Cell Physiol ; 214(3): 740-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17786964

ABSTRACT

Binding of 1alpha,25-dihydroxy vitamin D(3) to the C-terminal ligand-binding domain (LBD) of its receptor (VDR) induces a conformational change that enables interaction of VDR with transcriptional coactivators such as members of the p160/SRC family or the DRIP (vitamin D receptor-interacting complex)/Mediator complex. These interactions are critical for VDR-mediated transcriptional enhancement of target genes. The p160/SRC members contain intrinsic histone acetyl transferase (HAT) activities that remodel chromatin at promoter regulatory regions, and the DRIP/Mediator complex may establish a molecular bridge between the VDR complex and the basal transcription machinery. Here, we have analyzed the rate of recruitment of these coactivators to the bone-specific osteocalcin (OC) gene in response to short and long exposures to 1alpha,25-dihydroxy vitamin D3. We report that in intact osteoblastic cells VDR, in association with SRC-1, rapidly binds to the OC promoter in response to the ligand. The recruitment of SRC-1 correlates with maximal transcriptional enhancement of the OC gene at 4 h and with increased histone acetylation at the OC promoter. In contrast to other 1alpha,25-dihydroxy vitamin D3-enhanced genes, binding of the DRIP205 subunit, which anchors the DRIP/Mediator complex to the VDR, is detected at the OC promoter only after several hours of incubation with 1alpha,25-dihydroxy vitamin D(3), concomitant with the release of SRC-1. Together, our results support a model where VDR preferentially recruits SRC-1 to enhance bone-specific OC gene transcription.


Subject(s)
Gene Expression Regulation/drug effects , Histone Acetyltransferases/metabolism , Osteocalcin/genetics , Promoter Regions, Genetic/genetics , Receptors, Calcitriol/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Vitamin D/analogs & derivatives , Animals , Mediator Complex Subunit 1 , Models, Genetic , Nuclear Receptor Coactivator 1 , Osteoblasts/drug effects , Osteoblasts/enzymology , Osteoblasts/metabolism , Protein Binding/drug effects , RNA Polymerase II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Up-Regulation/drug effects , Vitamin D/pharmacology
12.
J Steroid Biochem Mol Biol ; 103(3-5): 420-4, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17218095

ABSTRACT

Binding of 1alpha,25-dihydroxy Vitamin D3 to the C-terminal domain (LBD) of its receptor (VDR), induces a conformational change that enables interaction of VDR with transcriptional coactivators such as the members of the p160/SRC family or the DRIP (Vitamin D interacting complex)/Mediator complex. These interactions are critical for VDR-mediated transcriptional enhancement of target genes. Recent reports indicate that nuclear receptors, including VDR, interact with p160/SRC members and the DRIP/Mediator complex in a sequential, cyclical, and mutually exclusive manner when bound to a target promoter, exhibiting also a high exchange rate. Here, we present an overview of how these coactivators are recruited to the bone-specific osteocalcin (OC) gene in response to short and long exposures to 1alpha,25-dihydroxy Vitamin D3. We find that in intact osteoblastic cells VDR and SRC-1 rapidly bind to the OC promoter in response to the ligand. This recruitment correlates with transcriptional enhancement of the OC gene and with increased histone acetylation at the OC promoter. In contrast, binding of the DRIP205 subunit, which anchors the DRIP/Mediator complex to the VDR, is detected at the OC promoter after several hours of incubation with 1alpha,25-dihydroxy Vitamin D3. Together, our results indicate that VDR preferentially recruits SRC-1 to enhance basal bone-specific OC gene transcription. We propose a model where specific protein-DNA and protein-protein interactions that occur within the context of the OC gene promoter in osteoblastic cells stabilize the preferential association of the VDR-SRC-1 complex.


Subject(s)
Histone Acetyltransferases/metabolism , Osteocalcin/genetics , Receptors, Calcitriol/metabolism , Transcription Factors/metabolism , Up-Regulation , Animals , Models, Biological , Nuclear Receptor Coactivator 1 , Promoter Regions, Genetic/genetics , Rats
13.
J Biol Chem ; 281(32): 22695-706, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-16772287

ABSTRACT

Tissue-specific activation of the osteocalcin (OC) gene is associated with changes in chromatin structure at the promoter region. Two nuclease-hypersensitive sites span the key regulatory elements that control basal tissue-specific and vitamin D3-enhanced OC gene transcription. To gain understanding of the molecular mechanisms involved in chromatin remodeling of the OC gene, we have examined the requirement for SWI/SNF activity. We inducibly expressed an ATPase-defective BRG1 catalytic subunit that forms inactive SWI/SNF complexes that bind to the OC promoter. This interaction results in inhibition of both basal and vitamin D3-enhanced OC gene transcription and a marked decrease in nuclease hypersensitivity. We find that SWI/SNF is recruited to the OC promoter via the transcription factor CCAAT/enhancer-binding protein beta, which together with Runx2 forms a stable complex to facilitate RNA polymerase II binding and activation of OC gene transcription. Together, our results indicate that the SWI/SNF complex is a key regulator of the chromatin-remodeling events that promote tissue-specific transcription in osteoblasts.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/metabolism , Chromatin/chemistry , Gene Expression Regulation , Osteocalcin/genetics , Animals , Catalytic Domain , Cholecalciferol/metabolism , Chromatin/metabolism , Models, Biological , Models, Genetic , Osteoblasts/metabolism , Osteocalcin/metabolism , Promoter Regions, Genetic , Rats , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...