Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 45(8): 1306-1315, 2020 07.
Article in English | MEDLINE | ID: mdl-32268346

ABSTRACT

Adolescent alcohol exposure increases the risk of developing alcohol use disorders (AUDs), yet the mechanisms responsible for this vulnerability remain largely unknown. One potential target for alcohol-induced changes is the circuitry that modulates negative affect and stress, two sexually dependent drivers of alcohol relapse. The bed nucleus of the stria terminalis (BNST) is a sexually dimorphic region that critically regulates negative affective- and stress-induced relapse. Group I metabotropic glutamate receptors (mGluR) are a target of interest due to their regulation of stress, anxiety behaviors, and BNST plasticity. The current studies investigate sex-dependent sensitivity to the effects of adolescent intermittent ethanol vapor exposure (AIE) on negative affect during acute and protracted alcohol withdrawal and following stress in adulthood. This work also assessed whether BNST group I mGluR-mediated long-term depression (LTD) was disrupted at these timepoints. During acute withdrawal, AIE altered LTD induced by the group I mGluR antagonist DHPG in females, but not males. During adulthood, stress unmasked persistent changes in DHPG-induced LTD and behavior that were not present under basal conditions. Females with an AIE history demonstrated enhanced negative affective-like behavior in the novelty-induced hypophagia test following restraint stress-a phenotype that could be blocked with systemic mGluR5 allosteric antagonism via MTEP. Conversely, males with an AIE history demonstrated elevated freezing in a contextual fear conditioning paradigm. These studies demonstrate long-lasting, sex-dependent phenotypes produced by AIE and suggest pharmaceutical interventions for alcohol use and comorbid disorders may be more effective if designed with sex differences in mind.


Subject(s)
Alcoholism , Septal Nuclei , Adolescent , Adult , Alcohol Drinking , Ethanol , Female , Humans , Male , Sex Characteristics
2.
Neuroscience ; 157(1): 229-37, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18835332

ABSTRACT

The avian brainstem serves as a useful model system to address the question of how afferent activity influences viability of target neurons. Approximately 20-30% of neurons in the chick cochlear nucleus, nucleus magnocellularis (NM) die following deafferentation (i.e. deafness produced by cochlea removal). Previous studies have identified cellular events that occur within hours following cochlea removal, which are thought to lead to the ultimate death of NM neurons. We have recently shown that chronic lithium treatment increases neuronal survival following deafferentation. To assess where in the cell death cascade lithium is having its effect, we evaluated some of the early deafferentation-induced cellular changes in NM neurons. Lithium did not affect deafferentation-induced changes that occur across the entire population of NM neurons. There were still deafferentation-induced increases in intracellular calcium concentrations and early changes in the ribosomes, as indicated by Y10b immunolabeling. Lithium did, however, affect changes that are believed to be indicative of the subpopulation of NM neurons that will eventually die. Ribosomes recovered in all of the deafferented NM neurons (as assessed by Y10b labeling) by 10 h following cochlea removal in subjects pretreated with lithium, while a subpopulation of the NM neurons in saline-treated subjects showed dramatic reduction in Y10b labeling at that time. Lithium treatment also prevented the robust upregulation of b cell leukemia/lymphoma-2 (Bcl-2) mRNA that is observed in a subpopulation of deafferented NM neurons 6 h following cochlea removal.


Subject(s)
Antimanic Agents/pharmacology , Cochlear Nucleus/cytology , Lithium Chloride/pharmacology , Afferent Pathways/physiology , Animals , Basal Nucleus of Meynert/cytology , Basal Nucleus of Meynert/drug effects , Basal Nucleus of Meynert/metabolism , Calcium/metabolism , Cell Death/drug effects , Chick Embryo , Cochlea/anatomy & histology , Cochlea/surgery , Cochlear Nucleus/drug effects , Cochlear Nucleus/metabolism , Fluorescent Dyes , Fura-2 , Immunohistochemistry , In Situ Hybridization , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Ribosomes/drug effects , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...