Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Arrhythm Electrophysiol ; 16(9): e011914, 2023 09.
Article in English | MEDLINE | ID: mdl-37577822

ABSTRACT

BACKGROUND: Pulsed field ablation (PFA) is a novel nonthermal cardiac ablation technology based on irreversible electroporation (IRE). While areas of IRE lead to durable lesions, the surrounding regions, where reversible electroporation occurs, recover. The behavior of local electrograms in areas of different electroporation levels remains unknown. The goal of this study is to characterize electrogram dynamics after PFA in IRE and reversible electroporation areas. METHODS: A total of 6 domestic swine were used. PFA was applied in the epicardium of the right and left ventricles using a focal monopolar catheter. Additional radiofrequency ablations were performed. Epicardial unipolar electrograms were acquired at baseline and for 60 minutes post PFA/radiofrequency ablation using a high-density electrode matrix attached to the epicardium. Electrogram dynamics were analyzed in areas corresponding to different levels of electroporation. Acute lesion formation was assessed after 3 to 5 hours by triphenyl tetrazolium chloride staining. RESULTS: Electrogram analysis demonstrated a clear association between electrogram changes and the level of electroporation. Immediately after PFA, electrograms displayed the following: a significant decrease in R/S-wave amplitude; a large elevation of the ST-segment; and a large decrease in their |(dV/dt)|max. Marked changes in electrograms were observed beyond the lesion area. Thereafter, a gradual recovery was observed. The evolution of all the electrogram parameters throughout the 60 minutes after PFA was significantly different (P<0.05) between the IRE and reversible electroporation areas. Acute lesion staining showed significantly larger depth for PFA lesions compared with radiofrequency ablation. CONCLUSIONS: This study shows that unipolar electrograms can differentiate between reversible electroporation and IRE areas during the first 30 minutes post ablation. Differences after the first 30 minutes are less evident. Our findings could result useful for immediate lesion assessment after PFA and warrant further investigation.


Subject(s)
Catheter Ablation , Radiofrequency Ablation , Swine , Animals , Electroporation , Electroporation Therapies
2.
Front Physiol ; 14: 1170822, 2023.
Article in English | MEDLINE | ID: mdl-37334046

ABSTRACT

This study aims to assess the barrier integrity and possible activation of enteric neural pathways associated with secretion and motility in the pig colon induced by an enterotoxigenic Escherichia coli (ETEC) challenge. 50 Danbred male piglets were used for this study. 16 were challenged with an oral dose of the ETEC strain F4+ 1.5 × 109 colony-forming unit. Colonic samples were studied 4- and 9-days post-challenge using both a muscle bath and Ussing chamber. Colonic mast cells were stained with methylene blue. In control animals, electrical field stimulation induced neurosecretory responses that were abolished by tetrodotoxin (10-6M) and reduced by the combination of atropine (10-4M) and α-chymotrypsin (10U/mL). Exogenous addition of carbachol, vasoactive intestinal peptide, forskolin, 5-HT, nicotine, and histamine produced epithelial Cl- secretion. At day 4 post-challenge, ETEC increased the colonic permeability. The basal electrogenic ion transport remained increased until day 9 post-challenge and was decreased by tetrodotoxin (10-6M), atropine (10-4M), hexamethonium (10-5M), and ondansetron (10-5M). In the muscle, electrical field stimulation produced frequency-dependent contractile responses that were abolished with tetrodotoxin (10-6M) and atropine (10-6M). Electrical field stimulation and carbachol responses were not altered in ETEC animals in comparison with control animals at day 9 post-challenge. An increase in mast cells, stained with methylene blue, was observed in the mucosa and submucosa but not in the muscle layer of ETEC-infected animals on day 9 post-challenge. ETEC increased the response of intrinsic secretory reflexes and produced an impairment of the colonic barrier that was restored on day 9 post-challenge but did not modify neuromuscular function.

3.
Biomed Pharmacother ; 158: 114169, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36592495

ABSTRACT

AIMS: Atrial fibrillation (AF) has been associated with excessive spontaneous calcium release, linked to cyclic AMP (cAMP)-dependent phosphorylation of calcium regulatory proteins. Because ß-blockers are expected to attenuate cAMP-dependent signaling, we aimed to examine whether the treatment of patients with ß-blockers affected the incidence of spontaneous calcium release events or transient inward currents (ITI). METHODS: The impact of treatment with commonly used ß-blockers was analyzed in human atrial myocytes from 371 patients using patch-clamp technique, confocal calcium imaging or immunofluorescent labeling. Data were analyzed using multivariate regression analysis taking into account potentially confounding effects of relevant clinical factors RESULTS: The L-type calcium current (ICa) density was diminished significantly in patients with chronic but not paroxysmal AF and the treatment of patients with ß-blockers did not affect ICa density in any group. By contrast, the ITI frequency was elevated in patients with either paroxysmal or chronic AF that did not receive treatment, and ß-blocker treatment reduced the frequency to levels observed in patients without AF. Confocal calcium imaging showed that ß-blocker treatment also reduced the calcium spark frequency in patients with AF to levels observed in those without AF. Furthermore, phosphorylation of the ryanodine receptor (RyR2) at Ser-2808 and phospholamban at Ser-16 was significantly lower in patients with AF that received ß-blockers. CONCLUSION: Together, our findings demonstrate that ß-blocker treatment may be of therapeutic utility to prevent spontaneous calcium release-induced atrial electrical activity; especially in patients with a history of paroxysmal AF displaying preserved ICa density.


Subject(s)
Adrenergic beta-Antagonists , Atrial Fibrillation , Calcium , Humans , Action Potentials , Atrial Fibrillation/metabolism , Calcium/metabolism , Cyclic AMP/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Adrenergic beta-Antagonists/pharmacology
4.
Biomedicines ; 10(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35885069

ABSTRACT

A hallmark of atrial fibrillation is an excess of spontaneous calcium release events, which can be mimicked by ß1- or ß2-adrenergic stimulation. Because ß1-adrenergic receptor blockers (ß1-blockers) are primarily used in clinical practice, we here examined the impact of ß2-adrenergic stimulation on spontaneous calcium release and assessed whether the R- and S-enantiomers of the non-selective ß- blocker carvedilol could reverse these effects. For this purpose, human atrial myocytes were isolated from patients undergoing cardiovascular surgery and subjected to confocal calcium imaging or immunofluorescent labeling of the ryanodine receptor (RyR2). Interestingly, the ß2-adrenergic agonist fenoterol increased the incidence of calcium sparks and waves to levels observed with the non-specific ß-adrenergic agonist isoproterenol. Moreover, fenoterol increased both the amplitude and duration of the sparks, facilitating their fusion into calcium waves. Subsequent application of the non ß-blocking R-Carvedilol enantiomer reversed these effects of fenoterol in a dose-dependent manner. R-Carvedilol also reversed the fenoterol-induced phosphorylation of the RyR2 at Ser-2808 dose-dependently, and 1 µM of either R- or S-Carvedilol fully reversed the effect of fenoterol. Together, these findings demonstrate that ß2-adrenergic stimulation alone stimulates RyR2 phosphorylation at Ser-2808 and spontaneous calcium release maximally, and points to carvedilol as a tool to attenuate the pathological activation of ß2-receptors.

5.
Cardiovasc Res ; 118(4): 1033-1045, 2022 03 16.
Article in English | MEDLINE | ID: mdl-33788918

ABSTRACT

AIMS: Atrial fibrillation (AF) has been associated with intracellular calcium disturbances in human atrial myocytes, but little is known about the potential influence of sex and we here aimed to address this issue. METHODS AND RESULTS: Alterations in calcium regulatory mechanisms were assessed in human atrial myocytes from patients without AF or with long-standing persistent or permanent AF. Patch-clamp measurements revealed that L-type calcium current (ICa) density was significantly smaller in males with than without AF (-1.15 ± 0.37 vs. -2.06 ± 0.29 pA/pF) but not in females with AF (-1.88 ± 0.40 vs. -2.21 ± 0.0.30 pA/pF). In contrast, transient inward currents (ITi) were more frequent in females with than without AF (1.92 ± 0.36 vs. 1.10 ± 0.19 events/min) but not in males with AF. Moreover, confocal calcium imaging showed that females with AF had more calcium spark sites than those without AF (9.8 ± 1.8 vs. 2.2 ± 1.9 sites/µm2) and sparks were wider (3.0 ± 0.3 vs. 2.2 ± 0.3 µm) and lasted longer (79 ± 6 vs. 55 ± 8 ms), favouring their fusion into calcium waves that triggers ITIs and afterdepolarizations. This was linked to higher ryanodine receptor phosphorylation at s2808 in women with AF, and inhibition of adenosine A2A or beta-adrenergic receptors that modulate s2808 phosphorylation was able to reduce the higher incidence of ITI in women with AF. CONCLUSION: Perturbations of the calcium homoeostasis in AF is sex-dependent, concurring with increased spontaneous SR calcium release-induced electrical activity in women but not in men, and with diminished ICa density in men only.


Subject(s)
Atrial Fibrillation , Calcium , Calcium/metabolism , Calcium Signaling/physiology , Female , Homeostasis , Humans , Male , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
6.
Acta Physiol (Oxf) ; 234(4): e13736, 2022 04.
Article in English | MEDLINE | ID: mdl-34709723

ABSTRACT

AIMS: It is unknown how ß-adrenergic stimulation affects calcium dynamics in individual RyR2 clusters and leads to the induction of spontaneous calcium waves. To address this, we analysed spontaneous calcium release events in green fluorescent protein (GFP)-tagged RyR2 clusters. METHODS: Cardiomyocytes from mice with GFP-tagged RyR2 or human right atrial tissue were subjected to immunofluorescent labelling or confocal calcium imaging. RESULTS: Spontaneous calcium release from single RyR2 clusters induced 91.4% ± 2.0% of all calcium sparks while 8.0% ± 1.6% were caused by release from two neighbouring clusters. Sparks with two RyR2 clusters had 40% bigger amplitude, were 26% wider, and lasted 35% longer at half maximum. Consequently, the spark mass was larger in two- than one-cluster sparks with a median and interquartile range for the cumulative distribution of 15.7 ± 20.1 vs 7.6 ± 5.7 a.u. (P < .01). ß2-adrenergic stimulation increased RyR2 phosphorylation at s2809 and s2815, tripled the fraction of two- and three-cluster sparks, and significantly increased the spark mass. Interestingly, the amplitude and mass of the calcium released from a RyR2 cluster were proportional to the SR calcium load, but the firing rate was not. The spark mass was also higher in 33 patients with atrial fibrillation than in 36 without (22.9 ± 23.4 a.u. vs 10.7 ± 10.9; P = .015). CONCLUSIONS: Most sparks are caused by activation of a single RyR2 cluster at baseline while ß-adrenergic stimulation doubles the mass and the number of clusters per spark. This mimics the shift in the cumulative spark mass distribution observed in myocytes from patients with atrial fibrillation.


Subject(s)
Atrial Fibrillation , Ryanodine Receptor Calcium Release Channel , Adrenergic Agents , Animals , Atrial Fibrillation/metabolism , Calcium/metabolism , Calcium Signaling , Humans , Mice , Myocytes, Cardiac/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
7.
Front Physiol ; 13: 1104327, 2022.
Article in English | MEDLINE | ID: mdl-36714312

ABSTRACT

Background: Characterization of atrial myocardial infarction is hampered by the frequent concurrence of ventricular infarction. Theoretically, atrial infarct scarring could be recognized by multifrequency tissue impedance, like in ventricular infarction, but this remains to be proven. Objective: This study aimed at developing a model of atrial infarction to assess the potential of multifrequency impedance to recognize areas of atrial infarct scar. Methods: Seven anesthetized pigs were submitted to transcatheter occlusion of atrial coronary branches arising from the left coronary circumflex artery. Six weeks later the animals were anesthetized and underwent atrial voltage mapping and multifrequency impedance recordings. The hearts were thereafter extracted for anatomopathological study. Two additional pigs not submitted to atrial branch occlusion were used as controls. Results: Selective occlusion of the atrial branches induced areas of healed infarction in the left atrium in 6 of the 7 cases. Endocardial mapping of the left atrium showed reduced multi-frequency impedance (Phase angle at 307 kHz: from -17.1° ± 5.0° to -8.9° ± 2.6°, p < .01) and low-voltage of bipolar electrograms (.2 ± 0.1 mV vs. 1.9 ± 1.5 mV vs., p < .01) in areas affected by the infarction. Data variability of the impedance phase angle was lower than that of bipolar voltage (coefficient of variability of phase angle at307 kHz vs. bipolar voltage: .30 vs. .77). Histological analysis excluded the presence of ventricular infarction. Conclusion: Selective occlusion of atrial coronary branches permits to set up a model of selective atrial infarction. Atrial multifrequency impedance mapping allowed recognition of atrial infarct scarring with lesser data variability than local bipolar voltage mapping. Our model may have potential applicability on the study of atrial arrhythmia mechanisms.

8.
Front Physiol ; 11: 264, 2020.
Article in English | MEDLINE | ID: mdl-32362831

ABSTRACT

BACKGROUND: Atrial coronary branch occlusion is a hardly recognizable clinical entity that can promote atrial fibrillation. The low diagnostic accuracy of the ECG could deal with the characteristics of the ischemia-induced changes in local atrial electrograms, but these have not been described. OBJECTIVES: We analyzed the effects of selective acute atrial branch occlusion on local myocardial structure, atrial electrograms, and surface ECG in an experimental model close to human cardiac anatomy and electrophysiology. METHODS: Six anesthetized open-chest anesthetized pigs underwent surgical occlusion of an atrial coronary branch arising from the right coronary artery during 4 h. Atrial electrograms and ECG were simultaneously recorded. One additional pig acted as sham control. In all cases, the hearts were processed for anatomopathological analysis. RESULTS: Atrial branch occlusion induced patchy atrial necrosis with sharp border zone. During the first 30 min of occlusion, atrial electrograms showed progressive R wave enlargement (1.8 ± 0.6 mV vs. 2.5 ± 1.1 mV, p < 0.01), delayed local activation times (28.5 ± 8.9 ms vs. 36.1 ± 16.4 ms, p < 0.01), ST segment elevation (-0.3 ± 0.3 mV vs. 1.0 ± 1.0 mV, p < 0.01), and presence of monophasic potentials. Atrial ST segment elevation decreased after 2 h of occlusion. The electrical border zone was ∼1 mm and expanded over time. After 2 h of occlusion, the ECG showed a decrease in P wave amplitude (from 0.09 ± 0.04 mV to 0.05 ± 0.04 mV after 165 min occlusion, p < 0.05) and duration (64.4 ± 8.0 ms vs. 80.9 ± 12.6 ms, p < 0.01). CONCLUSION: Selective atrial branch occlusion induces patchy atrial infarction and characteristic changes in atrial activation, R/S wave, and ST segment that are not discernible at the ECG. Only indirect changes in P wave amplitude and duration were appreciated in advanced stages of acute coronary occlusion.

SELECTION OF CITATIONS
SEARCH DETAIL
...