Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 10824, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402791

ABSTRACT

Delousing strategies, including mechanical delousing, are typically used to treat Atlantic salmon (Salmo salar) sea lice infestations. In this study, we evaluate the impact of mechanical delousing (Hydrolicer) on the skin bacterial microbiome of broodstock female and male Atlantic salmon. 16S rDNA sequencing of salmon skin microbial communities was performed immediately before delousing, right after delousing and 2 and 13 days post-delousing (dpd). The skin bacterial community of female salmon was more diverse than that of males at the start of the experiment. Overall, hydrolycer caused losses in alpha diversity in females and increases in alpha diversity in males. Hydrolicer also caused rapid shifts in the skin microbial community composition immediately after delicing in a sex-specific manner. There was a decrease in abundance of Proteobacteria and Bacteriodetes in both female and male salmon, whereas Firmicutes and Tenericutes abundances increased. Interestingly, the female community recovered faster, while the male community remained dysbiotic 13 dpd due to expansions in Bacteroidetes (Pseudomonadaceae) and Firmicutes. Our data suggest that female broodstock are more resilient to Hydrolicer treatment due to their more diverse skin microbiota community, and that sex influences the skin microbial community and therefore host health outcomes during common farming manipulations.


Subject(s)
Copepoda , Fish Diseases , Microbiota , Salmo salar , Animals , Female , Male , Skin/microbiology , Bacteria/genetics , Firmicutes
3.
bioRxiv ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36909635

ABSTRACT

The co-evolution between secretory immunoglobulins (sIgs) and microbiota began with the emergence of IgM over half a billion years ago. Yet, IgM function in vertebrates is mostly associated with systemic immunity against pathogens. sIgA and sIgT are the only sIgs known to be required in the control of microbiota homeostasis in warm- and cold-blooded vertebrates respectively. Recent studies have shown that sIgM coats a large proportion of the gut microbiota of humans and teleost fish, thus suggesting an ancient and conserved relationship between sIgM and microbiota early in vertebrate evolution. To test this hypothesis, we temporarily and selectively depleted IgM from rainbow trout, an old bony fish species. IgM depletion resulted in a drastic reduction in microbiota IgM coating levels and losses in gutassociated bacteria. These were accompanied by bacterial translocation, severe gut tissue damage, inflammation and dysbiosis predictive of metabolic shifts. Furthermore, depletion of IgM resulted in body weight loss and lethality in an experimental colitis model. Recovery of sIgM to physiological levels restores tissue barrier integrity, while microbiome homeostasis and their predictive metabolic capabilities are not fully restituted. Our findings uncover a previously unrecognized role of sIgM as an ancient master regulator of microbiota homeostasis and metabolism and challenge the current paradigm that sIgA and sIgT are the key vertebrate sIgs regulating microbiome homeostasis. One-Sentence Summary: IgM, the most ancient and conserved immunoglobulin in jawed vertebrates, is required for successful symbiosis with the gut microbiota.

4.
J Immunol ; 209(11): 2215-2226, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36426979

ABSTRACT

Nasal immunity is an ancient and conserved arm of the mucosal immune system in vertebrates. In teleost fish, we previously reported the presence of a nasopharynx-associated lymphoid tissue (NALT) characterized by scattered immune cells located in the trout olfactory lamellae. This diffuse NALT mounts innate and adaptive immune responses to nasal infection or vaccination. In mammals, lymphoid structures such as adenoids and tonsils support affinity maturation of the adaptive immune response in the nasopharyngeal cavity. These structures, known as organized NALT (O-NALT), have not been identified in teleost fish to date, but their evolutionary forerunners exist in sarcopterygian fish. In this study, we report that the rainbow trout nasal cavity is lined with a lymphoepithelium that extends from the most dorsal opening of the nares to the ventral nasal cavity. Within the nasal lymphoepithelium we found lymphocyte aggregates called O-NALT in this study that are composed of ∼ 56% CD4+, 24% IgM+, 16% CD8α+, and 4% IgT+ lymphocytes and that have high constitutive aicda mRNA expression. Intranasal (i.n.) vaccination with live attenuated infectious hematopoietic necrosis virus triggers expansions of B and T cells and aicda expression in response to primary i.n. vaccination. IgM+ B cells undergo proliferation and apoptosis within O-NALT upon prime but not boost i.n. vaccination. Our results suggest that novel mucosal microenvironments such as O-NALT may be involved in the affinity maturation of the adaptive immune response in early vertebrates.


Subject(s)
Adenoids , Gastric Mucosa , Animals , Germinal Center , Mammals , Biomarkers , Immunoglobulin M
5.
Vaccine ; 40(2): 229-238, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34893343

ABSTRACT

Previous research demonstrated that bacterial and viral vaccines delivered via the nasal route in rainbow trout (Oncorhynchus mykiss) at 7 and 28 days post-vaccination are highly protective (>95% protection). Long-term protection following nasal vaccination in teleosts has not been evaluated. The goal of this study was to assess efficacy and immune responses at 6 months (mo) post-vaccination (mpv), and long-lasting immune responses at 12 mpv of two different vaccines: an inactivated enteric red mouth disease (ERM) Yersinia ruckeri bacterin and a live attenuated infectious hematopoietic necrosis virus (IHNV) vaccine. Juvenile rainbow trout were vaccinated for Y. ruckeri via intraperitoneal (I.P.) and intranasal (I.N.) routes, and for IHNV by intramuscular (I.M.) and I.N. routes, then challenged at 6 mpv. Immune responses were determined at 6 and 12 mpv. ERM vaccine I.P. delivery elicited significantly higher serum IgM-specific titers that remained elevated compared to mock-vaccinated fish at 6 mpv. By 12 mpv, antibody titers to Y. ruckeri were not significantly different across all treatments. Following Y. ruckeri challenge at 6 mpv, a significant difference in cumulative percent mortality (CPM) was found for I.P.-vaccinated fish but not I.N.-vaccinated fish. I.M. and I.N. vaccination with live attenuated IHNV did not result in significant specific serum IgM titers at 6 or 12 mpv. Yet, I.N.-vaccinated fish showed the lowest CPM 6 mpv indicating long-term protection that does not correlate with systemic IgM responses. Repertoire analyses confirmed unique expansions of VH-JH rearrangements in the spleen of rainbow trout 12 mpv that varied with the type of vaccine and route of vaccination. Combined, these data demonstrate that I.N. vaccination with a live attenuated viral vaccine confers long lasting protection, but I.N. ERM vaccination does not and booster before 6 mpv is recommended.


Subject(s)
Fish Diseases , Mouth Diseases , Oncorhynchus mykiss , Yersinia Infections , Animals , Fish Diseases/prevention & control , Necrosis , Vaccination , Yersinia Infections/prevention & control , Yersinia Infections/veterinary , Yersinia ruckeri
6.
Sci Adv ; 7(47): eabj0829, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34788085

ABSTRACT

Terrestrialization is an extreme physiological adaptation by which African lungfish survive dry seasons. For months and up to several years, lungfish live inside a dry mucus cocoon that protects them from desiccation. Light and electron microscopy reveal that the lungfish cocoon is a living tissue that traps bacteria. Transcriptomic analyses identify a global state of inflammation in the terrestrialized lungfish skin characterized by granulocyte recruitment. Recruited granulocytes transmigrate into the cocoon where they release extracellular traps. In vivo DNase I surface spraying during terrestrialization results in dysbiosis, septicemia, skin wounds, and hemorrhages. Thus, lungfish have evolved unique immunological adaptations to protect their bodies from infection for extended periods of time while living on land. Trapping bacteria outside their bodies may benefit estivating vertebrates that undergo metabolic torpor.

7.
J Immunol ; 204(10): 2697-2711, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32238457

ABSTRACT

The adaptive immune system of all jawed vertebrates relies on the presence of B and T cell lymphocytes that aggregate in specific body sites to form primary and secondary lymphoid structures. Secondary lymphoid organs include organized MALT (O-MALT) such as the tonsils and Peyer patches. O-MALT became progressively organized during vertebrate evolution, and the TNF superfamily of genes has been identified as essential for the formation and maintenance of O-MALT and other secondary and tertiary lymphoid structures in mammals. Yet, the molecular drivers of O-MALT structures found in ectotherms and birds remain essentially unknown. In this study, we provide evidence that TNFSFs, such as lymphotoxins, are likely not a universal mechanism to maintain O-MALT structures in adulthood of teleost fish, sarcopterygian fish, or birds. Although a role for TNFSF2 (TNF-α) cannot be ruled out, transcriptomics suggest that maintenance of O-MALT in nonmammalian vertebrates relies on expression of diverse genes with shared biological functions in neuronal signaling. Importantly, we identify that expression of many genes with olfactory function is a unique feature of mammalian Peyer patches but not the O-MALT of birds or ectotherms. These results provide a new view of O-MALT evolution in vertebrates and indicate that different genes with shared biological functions may have driven the formation of these lymphoid structures by a process of convergent evolution.


Subject(s)
B-Lymphocytes/immunology , Lymphoid Tissue/immunology , Mucous Membrane/pathology , Palatine Tonsil/pathology , Peyer's Patches/pathology , T-Lymphocytes/immunology , Tumor Necrosis Factors/metabolism , Adaptive Immunity , Animals , Biological Evolution , Immunity, Mucosal , Neural Conduction , Palatine Tonsil/immunology , Peyer's Patches/immunology , Transcriptome , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factors/genetics , Vertebrates
8.
Sci Immunol ; 5(44)2020 02 07.
Article in English | MEDLINE | ID: mdl-32034088

ABSTRACT

Although mammalian secretory immunoglobulin A (sIgA) targets mucosal pathogens for elimination, its interaction with the microbiota also enables commensal colonization and homeostasis. This paradoxical requirement in the control of pathogens versus microbiota raised the question of whether mucosal (secretory) Igs (sIgs) evolved primarily to protect mucosal surfaces from pathogens or to maintain microbiome homeostasis. To address this central question, we used a primitive vertebrate species (rainbow trout) in which we temporarily depleted its mucosal Ig (sIgT). Fish devoid of sIgT became highly susceptible to a mucosal parasite and failed to develop compensatory IgM responses against it. IgT depletion also induced a profound dysbiosis marked by the loss of sIgT-coated beneficial taxa, expansion of pathobionts, tissue damage, and inflammation. Restitution of sIgT levels in IgT-depleted fish led to a reversal of microbial translocation and tissue damage, as well as to restoration of microbiome homeostasis. Our findings indicate that specialization of sIgs in pathogen and microbiota control occurred concurrently early in evolution, thus revealing primordially conserved principles under which primitive and modern sIgs operate in the control of microbes at mucosal surfaces.


Subject(s)
Homeostasis/immunology , Immunity, Mucosal/immunology , Immunoglobulins/immunology , Microbiota/immunology , Oncorhynchus mykiss/immunology , Animals , Evolution, Molecular , Oncorhynchus mykiss/parasitology
9.
Chem Senses ; 44(8): 615-630, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31403159

ABSTRACT

Sensory systems such as the olfactory system detect chemical stimuli and thereby determine the relationships between the animal and its surroundings. Olfaction is one of the most conserved and ancient sensory systems in vertebrates. The vertebrate olfactory epithelium is colonized by complex microbial communities, but microbial contribution to host olfactory gene expression remains unknown. In this study, we show that colonization of germ-free zebrafish and mice with microbiota leads to widespread transcriptional responses in olfactory organs as measured in bulk tissue transcriptomics and RT-qPCR. Germ-free zebrafish olfactory epithelium showed defects in pseudostratification; however, the size of the olfactory pit and the length of the cilia were not different from that of colonized zebrafish. One of the mechanisms by which microbiota control host transcriptional programs is by differential expression and activity of specific transcription factors (TFs). REST (RE1 silencing transcription factor, also called NRSF) is a zinc finger TF that binds to the conserved motif repressor element 1 found in the promoter regions of many neuronal genes with functions in neuronal development and differentiation. Colonized zebrafish and mice showed increased nasal expression of REST, and genes with reduced expression in colonized animals were strongly enriched in REST-binding motifs. Nasal commensal bacteria promoted in vitro differentiation of Odora cells by regulating the kinetics of REST expression. REST knockdown resulted in decreased Odora cell differentiation in vitro. Our results identify a conserved mechanism by which microbiota regulate vertebrate olfactory transcriptional programs and reveal a new role for REST in sensory organs.


Subject(s)
Microbiota/physiology , Nerve Tissue Proteins/genetics , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Repressor Proteins/genetics , Smell/genetics , Animals , Cell Line , Conserved Sequence , Gene Expression Profiling , Gene Expression Regulation , Germ-Free Life , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/microbiology , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/microbiology , Promoter Regions, Genetic , Protein Binding , Protein Isoforms/genetics , Protein Isoforms/metabolism , Rats , Repressor Proteins/metabolism , Symbiosis/physiology , Zebrafish
10.
Proc Natl Acad Sci U S A ; 116(25): 12428-12436, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31160464

ABSTRACT

The nervous system regulates host immunity in complex ways. Vertebrate olfactory sensory neurons (OSNs) are located in direct contact with pathogens; however, OSNs' ability to detect danger and initiate immune responses is unclear. We report that nasal delivery of rhabdoviruses induces apoptosis in crypt OSNs via the interaction of the OSN TrkA receptor with the viral glycoprotein in teleost fish. This signal results in electrical activation of neurons and very rapid proinflammatory responses in the olfactory organ (OO), but dampened inflammation in the olfactory bulb (OB). CD8α+ cells infiltrate the OO within minutes of nasal viral delivery, and TrkA blocking, but not caspase-3 blocking, abrogates this response. Infiltrating CD8α+ cells were TCRαß T cells with a nonconventional phenotype that originated from the microvasculature surrounding the OB and not the periphery. Nasal delivery of viral glycoprotein (G protein) recapitulated the immune responses observed with the whole virus, and antibody blocking of viral G protein abrogated these responses. Ablation of crypt neurons in zebrafish resulted in increased susceptibility to rhabdoviruses. These results indicate a function for OSNs as a first layer of pathogen detection in vertebrates and as orchestrators of nasal-CNS antiviral immune responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Infectious hematopoietic necrosis virus/immunology , Olfactory Receptor Neurons/physiology , Receptor, trkA/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Nasal Mucosa/immunology , Nasal Mucosa/virology , Olfactory Receptor Neurons/cytology , Olfactory Receptor Neurons/virology , Oncorhynchus mykiss
11.
Dev Comp Immunol ; 92: 212-222, 2019 03.
Article in English | MEDLINE | ID: mdl-30513304

ABSTRACT

The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.


Subject(s)
Infections/immunology , Lymphoid Tissue/immunology , Nasopharynx/immunology , Nose Diseases/immunology , Olfactory Bulb/immunology , Olfactory Mucosa/immunology , Animals , Disease Models, Animal , Host-Pathogen Interactions , Humans , Immunity , Mice
12.
Front Immunol ; 9: 1259, 2018.
Article in English | MEDLINE | ID: mdl-29915597

ABSTRACT

Animal mucosal barriers constantly interact with the external environment, and this interaction is markedly different in aquatic and terrestrial environments. Transitioning from water to land was a critical step in vertebrate evolution, but the immune adaptations that mucosal barriers such as the skin underwent during that process are essentially unknown. Vertebrate animals such as the African lungfish have a bimodal life, switching from freshwater to terrestrial habitats when environmental conditions are not favorable. African lungfish skin mucus secretions contribute to the terrestrialization process by forming a cocoon that surrounds and protects the lungfish body. The goal of this study was to characterize the skin mucus immunoproteome of African lungfish, Protopterus dolloi, before and during the induction phase of terrestrialization as well as the immunoproteome of the gill mucus during the terrestrialization induction phase. Using LC-MS/MS, we identified a total of 974 proteins using a lungfish Illumina RNA-seq database, 1,256 proteins from previously published lungfish sequence read archive and 880 proteins using a lungfish 454 RNA-seq database for annotation in the three samples analyzed (free-swimming skin mucus, terrestrialized skin mucus, and terrestrialized gill mucus). The terrestrialized skin mucus proteome was enriched in proteins with known antimicrobial functions such as histones and S100 proteins compared to free-swimming skin mucus. In support, gene ontology analyses showed that the terrestrialized skin mucus proteome has predicted functions in processes such as viral process, defense response to Gram-negative bacterium, and tumor necrosis factor-mediated signaling. Importantly, we observed a switch in immunoglobulin heavy chain secretion upon terrestrialization, with IgW1 long form (IgW1L) and IgM1 present in free-swimming skin mucus and IgW1L, IgM1, and IgM2 in terrestrialized skin mucus. Combined, these results indicate an increase in investment in the production of unique immune molecules in P. dolloi skin mucus in response to terrestrialization that likely better protects lungfish against external aggressors found in land.


Subject(s)
Fishes/metabolism , Mucus/metabolism , Proteome , Proteomics , Skin/metabolism , Animals , Chromatography, Liquid , Fishes/genetics , Fishes/immunology , Gene Expression Profiling , Histocytochemistry , Proteomics/methods , Tandem Mass Spectrometry
13.
Aquaculture ; 495: 932-939, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30666068

ABSTRACT

Farmed fish live in association with diverse bacterial communities that produce wide arrays of metabolites. In rainbow trout, the skin and the gills are colonized by Flectobacillus major, a bacterium known to produce sphingolipids (SLs). The goal of this study is to evaluate the ability of F. major SLs to regulate rainbow trout inflammatory responses. F. major SLs were delivered by themselves or in combination with Freund's Complete Adjuvant (FCA), an oil-based adjuvant known to cause severe abdominal inflammation when injected to fish. Trout injected with SL + FCA showed decreased severity of FCA toxic effects including necrosis, granuloma formation and presence of oil droplets. However, inclusion of SLs in the FCA preparation did not decrease infiltration of immune cells intramuscularly at the site of injection. Intraperitoneal or intravenous delivery of F. major SLs resulted in increased expression of IgT, IgM and TGFß transcripts in the gills but not the head-kidney and had no effects on IL-10 expression. These results indicate the F. major SLs regulate rainbow trout inflammatory responses and indicate that this compound can have important applications in farmed fish health management.

14.
J Immunol ; 199(11): 3900-3913, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29061765

ABSTRACT

Chemokines and chemokine receptors have rapidly diversified in teleost fish but their immune functions remain unclear. We report in this study that CCL19, a chemokine known to control lymphocyte migration and compartmentalization of lymphoid tissues in mammals, diversified in salmonids leading to the presence of six CCL19-like genes named CK10a, CK10b, CK12a, CK12b, CK13a, and CK13b. Salmonid CCL19-like genes all contain the DCCL-conserved motif but share low amino acid sequence identity. CK12 (but not CK10 or CK13) is constitutively expressed at high levels in all four trout MALT. Nasal vaccination with a live attenuated virus results in sustained upregulation of CK12 (but not CK10 or CK13) expression in trout nasopharynx-associated lymphoid tissue. Recombinant His-tagged trout CK12a (rCK12a) is not chemotactic in vitro but it increases the width of the nasal lamina propria when delivered intranasally. rCK12a delivered intranasally or i.p. stimulates the expression of CD8α, granulysin, and IFN-γ in mucosal and systemic compartments and increases nasal CD8α+ cell numbers. rCK12a is able to stimulate proliferation of head kidney leukocytes from Ag-experienced trout but not naive controls, yet it does not confer protection against viral challenge. These results show that local nasal production of CK12a contributes to antiviral immune protection both locally and systemically via stimulation of CD8 cellular immune responses and highlight a conserved role for CK12 in the orchestration of mucosal and systemic immune responses against viral pathogens in vertebrates.


Subject(s)
Chemokine CCL19/genetics , Fish Diseases/immunology , Fish Proteins/genetics , Infectious hematopoietic necrosis virus/immunology , Oncorhynchus mykiss/immunology , Rhabdoviridae Infections/immunology , Viral Vaccines/immunology , Animals , CD8 Antigens/metabolism , Cells, Cultured , Chemokine CCL19/metabolism , Cloning, Molecular , Evolution, Molecular , Female , Fish Proteins/metabolism , Head Kidney/metabolism , Immunity, Cellular , Immunity, Humoral , Immunity, Mucosal , Interferon-gamma/metabolism , Lymphoid Tissue/metabolism , Phylogeny
15.
J Immunol ; 197(11): 4453-4463, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27798156

ABSTRACT

Mucosal surfaces require balancing different physiological roles and immune functions. To effectively achieve multifunctionality, mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to be orchestrated. In this study we identified the presence of CD8α+ cells in the rainbow trout (Oncorhynchus mykiss) nasal epithelium. Nasal CD8α+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin ß2 expression. Importantly, nasal CD8α+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial region. The grouping of CD8α+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared with the neuroepithelium. Whereas viral Ag uptake occurred via both tip and lateral routes, tip-resident MHC class II+ cells are located significantly closer to the lumen of the nasal cavity than are their neuroepithelial counterparts, therefore having quicker access to invading pathogens. Our studies reveal compartmentalized mucosal immune responses within the nasal mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory functions.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cellular Microenvironment/immunology , Immunity, Cellular , Immunity, Mucosal , Nasal Mucosa/immunology , Oncorhynchus mykiss/immunology , Animals , CD8 Antigens/immunology , Chemokine CCL19/immunology , Fish Proteins/immunology , Intercellular Adhesion Molecule-1/immunology , Vascular Cell Adhesion Molecule-1/immunology
16.
Curr Biol ; 25(7): 936-41, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25802152

ABSTRACT

Thyroid hormone (TH) is an ancestral signal linked to seasonal life history transitions throughout vertebrates. TH action depends upon tissue-localized regulation of levels of active TH (triiodothyronine, T3), through spatiotemporal expression of thyroid hormone deiodinase (dio) genes. We investigated the dio gene family in juvenile Atlantic salmon (Salmo salar) parr, which prepare for seaward migration in the spring (smoltification) through TH-dependent changes in physiology. We identified two type 2 deiodinase paralogs, dio2a and dio2b, responsible for conversion of thyroxine (T4) to T3. During smoltification, dio2b was induced in the brain and gills in zones of cell proliferation following increasing day length. Contrastingly, dio2a expression was induced in the gills by transfer to salt water (SW), with the magnitude of the response proportional to the plasma chloride level. This response reflected a selective enrichment for osmotic response elements (OREs) in the dio2a promoter region. Transcriptomic profiling of gill tissue from fish transferred to SW plus or minus the deiodinase inhibitor, iopanoic acid, revealed SW-induced increases in cellular respiration as the principal consequence of gill dio2 activity. Divergent evolution of dio2 paralogs supports organ-specific timing of the TH-dependent events governing the phenotypic plasticity required for migration to sea.


Subject(s)
Gills/metabolism , Iodide Peroxidase/metabolism , Life Cycle Stages/physiology , Salmo salar/growth & development , Thyroid Hormones/metabolism , Animals , Gills/growth & development , Iodide Peroxidase/genetics , Life Cycle Stages/genetics , Molecular Sequence Data , Osmotic Pressure , Seasons , Thyroid Hormones/genetics , Thyroxine/metabolism , Triiodothyronine/metabolism , Iodothyronine Deiodinase Type II
17.
Fish Shellfish Immunol ; 44(1): 316-20, 2015 May.
Article in English | MEDLINE | ID: mdl-25745865

ABSTRACT

This study builds upon previous work studying antimicrobial peptide (AMP) gene expression in rainbow trout (Oncorhynchus mykiss) fed a peptidoglycan (PG) enriched diet. The aims here were 1) to evaluate how long AMP expression is elevated in skin with continuous feeding of fish with the PG enriched diet for 21 or 28 days, and 2) to assess the impact of stopping PG feeding at day 14 when sampled at day 21 or 28. The rainbow trout were divided into 6 groups, with two fed a control commercial diet for the duration of the experiment and the other four given the same diet enriched with 10 mg PG/Kg for 14 days (PG 1-14) or continuously (PG continuous), the former reverting back to the commercial diet at day 14. No mortalities occurred during the study and there were no significant differences in growth among the fish in the different diet groups. The expression of six AMP genes was studied by real-time PCR in the skin, since these genes were shown to be induced in response to the PG enriched diets in a previous experiment. We show that continuous PG treatment for 21 or 28 days maintained high levels of AMP expression, although in general the levels decreased with time on the diets. Withdrawal of the PG diets at day 14 resulted in a fall in expression level especially apparent with omCATH-1, omCATH-2 and omLEAP-2a, but with omDB-3 and omDB-4 remaining at elevated levels (x10) in comparison to fish given a control diet. These results confirm that orally administered PG clearly enhances the trout innate immune system and could be used as a means to boost fish defences. Future studies should be conducted to verify the impact on survival after pathogen challenge in trout fed PG enriched diets under these regimes.


Subject(s)
Antimicrobial Cationic Peptides/genetics , Oncorhynchus mykiss/immunology , Peptidoglycan/pharmacology , Animals , Diet , Gene Expression/drug effects , Immunity, Innate/drug effects , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/growth & development , Skin/drug effects , Skin/metabolism
18.
Genome Biol Evol ; 6(7): 1790-805, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24951567

ABSTRACT

Many organisms can generate alternative phenotypes from the same genome, enabling individuals to exploit diverse and variable environments. A prevailing hypothesis is that such adaptation has been favored by gene duplication events, which generate redundant genomic material that may evolve divergent functions. Vertebrate examples of recent whole-genome duplications are sparse although one example is the salmonids, which have undergone a whole-genome duplication event within the last 100 Myr. The life-cycle of the Atlantic salmon, Salmo salar, depends on the ability to produce alternating phenotypes from the same genome, to facilitate migration and maintain its anadromous life history. Here, we investigate the hypothesis that genome-wide and local gene duplication events have contributed to the salmonid adaptation. We used high-throughput sequencing to characterize the transcriptomes of three key organs involved in regulating migration in S. salar: Brain, pituitary, and olfactory epithelium. We identified over 10,000 undescribed S. salar sequences and designed an analytic workflow to distinguish between paralogs originating from local gene duplication events or from whole-genome duplication events. These data reveal that substantial local gene duplications took place shortly after the whole-genome duplication event. Many of the identified paralog pairs have either diverged in function or become noncoding. Future functional genomics studies will reveal to what extent this rich source of divergence in genetic sequence is likely to have facilitated the evolution of extreme phenotypic plasticity required for an anadromous life-cycle.


Subject(s)
Gene Duplication , Genetic Variation , Salmo salar/genetics , Animals , Databases, Genetic , Phenotype
19.
Fish Shellfish Immunol ; 34(2): 529-37, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23220715

ABSTRACT

The aim of this study was to investigate the effect of feeding rainbow trout (Oncorhynchus mykiss) peptidoglycan (PG) enriched diets on antimicrobial peptide (AMP) gene expression. Fish were divided into 5 groups and fed diets containing 0, 5, 10, 50 and 100 mg PG/Kg, and sampled 1, 7 and 14 days later. The expression of eight AMP genes (four defensins, two cathelicidins and two liver expressed AMPs) was determined in skin, gill, gut and liver, tissues important for first lines of defence or production of acute phase proteins. Up-regulation of many AMPs was found after feeding the PG enriched diets, with sequential expression seen over the time course studied, where defensins were typically expressed early and cathelicidins and LEAPs later on. A number of clear differences in AMP responsiveness between the tissues examined were also apparent. Of the four PG concentrations used, 5 mg PG/Kg did not always elicit AMP gene induction or to the same degree as seen with the other diets. The three higher dose groups generally showed similar trends although differences in fold change were more pronounced in the 50 and 100 mg PG/Kg groups. Curiously several AMPs were down-regulated after 14 days of feeding in gills, gut and liver. Nevertheless, overall the PG enriched diets had a positive effect on AMP expression. Further investigations now need to be undertaken to confirm whether this higher AMP gene expression correlates with protection against common bacterial diseases and if PG enriched diets have value as a means to temporarily boost the piscine immune system.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Diet , Gene Expression Regulation/drug effects , Oncorhynchus mykiss/metabolism , Peptidoglycan/pharmacology , Analysis of Variance , Animals , DNA Primers/genetics , DNA, Complementary/genetics , Dose-Response Relationship, Drug , Peptidoglycan/administration & dosage , Real-Time Polymerase Chain Reaction
20.
Dev Comp Immunol ; 38(4): 545-53, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22989998

ABSTRACT

Nuclear factor-kB (NF-kB) is a transcription factor that plays a central role in the regulation of a variety of genes including many involved in bacterial and viral infections. NF-kB is normally sequestered by inhibitory proteins (IkBs) in the cytoplasm of non-stimulated cells. The degradation of IkBs by the ubiquitin proteasome pathway releases NF-kB allowing its translocation to the nucleus where it regulates gene transcription. The Mitochondrial Ubiquitin Ligase Activator of NF-kB, (MULAN), is an E3 ubiquitin ligase involved in controlling activation of NF-kB, and regulating mitochondrial dynamics and apoptosis. We report the characterisation of a novel piscine-specific MULAN related gene (MRG) sequence, its mRNA tissue distribution and expression following in vivo and in vitro challenges. MRG cDNA was identified in Atlantic salmon and its sequence encodes a predicted protein of 274 amino acids. The mRNA of MRG was expressed in multiple tissues, with the highest abundance head kidney. An Aeromonas salmonicida bacterial challenge increased expression of this gene in head kidney, liver and gill tissue at 6 h and 24 h. In vitro stimulation of a salmonid cell line indicated MRG was increased in expression following stimulation with LPS, PolyI:C and recombinant trout IL-1ß for 4 h and 24 h. These results suggest an active role of MRG in the activation of the NF-kB pathway during early immune responses.


Subject(s)
Fish Diseases/metabolism , Fish Proteins/genetics , Gram-Negative Bacterial Infections/veterinary , NF-kappa B/metabolism , Salmo salar/metabolism , Ubiquitin-Protein Ligases/genetics , 5' Flanking Region , Aeromonas salmonicida/physiology , Amino Acid Sequence , Animals , Cells, Cultured , Conserved Sequence , Exons , Fish Diseases/immunology , Fish Proteins/metabolism , Gene Expression Regulation/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/metabolism , Head Kidney/metabolism , Host-Pathogen Interactions , Molecular Sequence Annotation , Molecular Sequence Data , Organ Specificity , Phylogeny , Salmo salar/genetics , Salmo salar/immunology , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Synteny , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...