Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Biotechnol ; 308: 35-39, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31778732

ABSTRACT

Heterologous production of fungal ligninolytic cocktails is challenging due to the low yields of catalytically active lignin modifying peroxidases. Production using a natural system, such as a wood-rotting fungus, is a promising alternative if specific or preferential induction of the ligninolytic activities could be achieved. Using transcriptomics, gene expression of the white-rot Dichomitus squalens during growth on mixtures of aromatic compounds, with ring structures representing the two major lignin sub-units, was compared to a wood substrate. Most of the genes encoding lignin modifying enzymes (laccases and peroxidases) categorised as highly or moderately expressed on wood were expressed similarly on aromatic compounds. Higher expression levels of a subset of manganese and versatile peroxidases was observed on di- compared to mono-methoxylated aromatics. The expression of polysaccharide degrading enzymes was lower on aromatic compounds compared to wood, demonstrating that the induction of lignin modifying enzymes became more specific. This study suggests potential for aromatic waste streams, e.g. from lignocellulose pretreatment, to produce a lignin-specific enzyme cocktail from D. squalens or other white-rot fungi.


Subject(s)
Fungal Proteins/genetics , Gene Expression Profiling/methods , Hydrocarbons, Aromatic/pharmacology , Polyporaceae/growth & development , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Fungal/drug effects , Hydrocarbons, Aromatic/chemistry , Laccase/genetics , Lignin/metabolism , Peroxidases/genetics , Polyporaceae/metabolism , Wood/chemistry , Wood/microbiology
3.
Microbiol Resour Announc ; 8(18)2019 May 02.
Article in English | MEDLINE | ID: mdl-31048399

ABSTRACT

Here, we report the draft genome sequences of three isolates of the wood-decaying white-rot basidiomycete fungus Dichomitus squalens The genomes of these monokaryons were sequenced to provide more information on the intraspecies genomic diversity of this fungus and were compared to the previously sequenced genome of D. squalens LYAD-421 SS1.

4.
Appl Environ Microbiol ; 84(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29572208

ABSTRACT

Fungi can decompose plant biomass into small oligo- and monosaccharides to be used as carbon sources. Some of these small molecules may induce metabolic pathways and the production of extracellular enzymes targeted for degradation of plant cell wall polymers. Despite extensive studies in ascomycete fungi, little is known about the nature of inducers for the lignocellulolytic systems of basidiomycetes. In this study, we analyzed six sugars known to induce the expression of lignocellulolytic genes in ascomycetes for their role as inducers in the basidiomycete white-rot fungus Dichomitus squalens using a transcriptomic approach. This identified cellobiose and l-rhamnose as the main inducers of cellulolytic and pectinolytic genes, respectively, of D. squalens Our results also identified differences in gene expression patterns between dikaryotic and monokaryotic strains of D. squalens cultivated on plant biomass-derived monosaccharides and the disaccharide cellobiose. This suggests that despite conservation of the induction between these two genetic forms of D. squalens, the fine-tuning in the gene regulation of lignocellulose conversion is differently organized in these strains.IMPORTANCE Wood-decomposing basidiomycete fungi have a major role in the global carbon cycle and are promising candidates for lignocellulosic biorefinery applications. However, information on which components trigger enzyme production is currently lacking, which is crucial for the efficient use of these fungi in biotechnology. In this study, transcriptomes of the white-rot fungus Dichomitus squalens from plant biomass-derived monosaccharide and cellobiose cultures were studied to identify compounds that induce the expression of genes involved in plant biomass degradation.


Subject(s)
Basidiomycota/enzymology , Basidiomycota/genetics , Cell Wall/metabolism , Fungal Proteins/genetics , Lignin/metabolism , Biomass , Cellobiose/metabolism , Gene Expression , Gene Expression Profiling , Plant Cells/metabolism , Wood/metabolism , Wood/microbiology
5.
J Microbiol Methods ; 143: 38-43, 2017 12.
Article in English | MEDLINE | ID: mdl-28987554

ABSTRACT

D. squalens, a white-rot fungus that efficiently degrades lignocellulose in nature, can be used in various biotechnological applications and has several strains with sequenced and annotated genomes. Here we present a method for the transformation of this basidiomycete fungus, using a recently introduced commercial ascomycete protoplasting enzyme cocktail, Protoplast F. In protoplasting of D. squalens mycelia, Protoplast F outperformed two other cocktails while releasing similar amounts of protoplasts to a third cocktail. The protoplasts released using Protoplast F had a regeneration rate of 12.5% (±6 SE). Using Protoplast F, the D. squalens monokaryon CBS464.89 was conferred with resistance to the antibiotics hygromycin and G418 via polyethylene glycol mediated protoplast transformation with resistance cassettes expressing the hygromycin phosphotransferase (hph) and neomycin phosphotransferase (nptII) genes, respectively. The hph gene was expressed in D. squalens using heterologous promoters from genes encoding ß-tubulin or glyceraldehyde 3-phosphate dehydrogenase. A Southern blot confirmed integration of a resistance cassette into the D. squalens genome. An average of six transformants (±2 SE) were obtained when at least several million protoplasts were used (a transformation efficiency of 0.8 (±0.3 SE) transformants per µg DNA). Transformation of D. squalens demonstrates the suitability of the Protoplast F cocktail for basidiomycete transformation and furthermore can facilitate understanding of basidiomycete gene function and development of improved strains for biotechnological applications.


Subject(s)
Gene Transfer Techniques , Polyporaceae/genetics , Protoplasts , Transformation, Genetic , Drug Resistance, Fungal , Gene Expression , Humans , Kanamycin Kinase/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Promoter Regions, Genetic , Tubulin/genetics
6.
IMA Fungus ; 8(1): 17-25, 2017 06.
Article in English | MEDLINE | ID: mdl-28824837

ABSTRACT

Dichomitussqualens is a white-rot fungus that colonizes and grows mainly on softwood and is commonly found in the northern parts of Europe, North America, and Asia. We analyzed the genetic and physiological diversity of eight D. squalens monokaryons derived from a single dikaryon. In addition, an unrelated dikaryon and a newly established dikaryon from two of the studied monokaryons were included. Both growth and lignocellulose acting enzyme profiles were highly variable between the studied monokaryotic and dikaryotic strains, demonstrating a high level of diversity within the species.

SELECTION OF CITATIONS
SEARCH DETAIL
...