Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 86(11): 2443-6, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11289950

ABSTRACT

We search for general patterns that explain the low field magnetoresistance at low temperatures in the system A(2-x)A'xFeMoO6. The observed linear dependence of the low field magnetoresistance with the saturation magnetization for the series is related to the antisite disorder at the Fe and Mo sites. This is explained in terms of a spin dependent crossing of intragranular barriers originated from the presence of antiferromagnetic SrFeO3 patches that naturally develop when antisite disorder occurs in the double perovskite. The presence of a moderate level of antisite disorder is at the very root of low field magnetoresistance although effects such as disorder distribution, connectivity, or morphology add their contribution.

2.
Inorg Chem ; 39(5): 917-23, 2000 Mar 06.
Article in English | MEDLINE | ID: mdl-12526369

ABSTRACT

Stoichiometric RMnO3 perovskites have been prepared in the widest range of R3+ ionic sizes, from PrMnO3 to ErMnO3. Soft-chemistry procedures have been employed; inert-atmosphere annealings were required to synthesize the materials with more basic R cations (R = Pr, Nd), in order to minimize the unwanted presence of Mn4+. On the contrary, annealings in O2 flow were necessary to stabilize the perovskite phases for the last terms of the series, HoMnO3, ErMnO3, and YMnO3, thus avoiding or minimizing the formation of competitive hexagonal phases with the same stoichiometry. The samples have been investigated at room temperature by high-resolution neutron powder diffraction to follow the evolution of the crystal structures along the series. The results are compared with reported data for LaMnO3. The distortion of the orthorhombic perovskite (space group Pbnm), characterized by the tilting angle of the MnO6 octahedra, progressively increases from Pr to Er due to simple steric factors. Additionally, all of the perovskites show a distortion of the MnO6 octahedra due to the orbital ordering characteristic of the Jahn-Teller effect of Mn3+ cations. The degree of orbital ordering slightly increases from La to Tb and then remains almost unchanged for the last terms of the series. The stability of the crystal structure is also discussed in light of bond-valence arguments.

SELECTION OF CITATIONS
SEARCH DETAIL
...