Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 11(3)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803917

ABSTRACT

Osteoarthritis (OA) is the most common rheumatic disease, characterized by progressive articular cartilage degradation. Raman spectroscopy (RS) has been recently proposed as a label-free tool to detect molecular changes in musculoskeletal tissues. We used cartilage samples derived from human femoral heads to perform an ex vivo study of different Raman signals and ratios, related to major and minor molecular components of articular cartilage, hereby proposed as candidate optical biomarkers for OA. Validation was performed against the radiological Kellgren-Lawrence (K-L) grading system, as a gold standard, and cross-validated against sulfated glycosaminoglycans (sGAGs) and total collagens (Hyp) biochemical contents. Our results showed a significant decrease in sGAGs (SGAGs, A1063 cm-1/A1004 cm-1) and proteoglycans (PGs, A1375 cm-1/A1004 cm-1) and a significant increase in collagen disorganization (ColD/F, A1245 cm-1/A1270 cm-1), with OA severity. These were correlated with sGAGs or Hyp contents, respectively. Moreover, the SGAGs/HA ratio (A1063 cm-1/A960 cm-1), representing a functional matrix, rich in proteoglycans, to a mineralized matrix-hydroxyapatite (HA), was significantly lower in OA cartilage (K-L I vs. III-IV, p < 0.05), whilst the mineralized to collagenous matrix ratio (HA/Col, A960 cm-1/A920 cm-1) increased, being correlated with K-L. OA samples showed signs of tissue mineralization, supported by the presence of calcium crystals-related signals, such as phosphate, carbonate, and calcium pyrophosphate dihydrate (MGP, A960 cm-1/A1004 cm-1, MGC, A1070 cm-1/A1004 cm-1 and A1050 cm-1/A1004 cm-1). Finally, we observed an increase in lipids ratio (IL, A1450 cm-1/A1670 cm-1) with OA severity. As a conclusion, we have described the molecular fingerprint of hip cartilage, validating a panel of optical biomarkers and the potential of RS as a complementary diagnostic tool for OA.

2.
Expert Rev Mol Diagn ; 20(8): 789-802, 2020 08.
Article in English | MEDLINE | ID: mdl-32538250

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is a highly heterogenous disease influenced by different molecular, anatomic, and physiologic imbalances. Some of the bottlenecks for enhanced diagnosis and therapeutic assessment are the lack of validated biomarkers and early diagnosis tools. In this narrative review, we analyze the potential of Raman spectroscopy (RS) as a label-free optical tool for the characterization of articular joint tissues and its application as a diagnosis tool for OA. AREAS COVERED: Raman spectra produce a unique 'molecular fingerprint' providing rotational and vibrational molecular information, allowing the identification and follow-up of molecular changes associated with OA pathological mechanisms. Focusing on multiple joint tissues (cartilage, synovium, bone, tendons, ligaments, and meniscus) and their contribution in disease incidence and progression, this review highlights the current knowledge on the application of RS in the characterization of organic and inorganic molecules present at these tissues and alterations that occur in the onset of OA. EXPERT OPINION: Vibrational spectroscopy techniques, such as RS, are low cost, rapid and minimally invasive approaches that offer high specificity in the assessment of the molecular composition of complex tissues. Combined with multivariate statistical methods, RS offers great potential for optical biomarkers discovery or disease diagnosis applications, and we hereby discuss clinical translational progresses on the field.


Subject(s)
Biomarkers , Joints/pathology , Osteoarthritis/diagnosis , Osteoarthritis/etiology , Spectrum Analysis, Raman/methods , Humans , Molecular Diagnostic Techniques , Organ Specificity
3.
Mar Drugs ; 18(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023805

ABSTRACT

Osteoarthritis is the most prevalent rheumatic disease. During disease progression, differences have been described in the prevalence of chondroitin sulfate (CS) isomers. Marine derived-CS present a higher proportion of the 6S isomer, offering therapeutic potential. Accordingly, we evaluated the effect of exogenous supplementation of CS, derived from the small spotted catshark (Scyliorhinus canicula), blue shark (Prionace glauca), thornback skate (Raja clavata) and bovine CS (reference), on the proliferation of osteochondral cell lines (MG-63 and T/C-28a2) and the chondrogenic differentiation of mesenchymal stromal cells (MSCs). MG-G3 proliferation was comparable between R. clavata (CS-6 intermediate ratio) and bovine CS (CS-4 enrichment), for concentrations below 0.5 mg/mL, defined as a toxicity threshold. T/C-28a2 proliferation was significantly improved by intermediate ratios of CS-6 and -4 isomers (S. canicula and R. clavata). A dose-dependent response was observed for S. canicula (200 µg/mL vs 50 and 10 µg/mL) and bovine CS (200 and 100 µg/mL vs 10 µg/mL). CS sulfation patterns discretely affected MSCs chondrogenesis; even though S. canicula and R. clavata CS up-regulated chondrogenic markers expression (aggrecan and collagen type II) these were not statistically significant. We demonstrate that intermediate values of CS-4 and -6 isomers improve cell proliferation and offer potential for chondrogenic promotion, although more studies are needed to elucidate its mechanism of action.


Subject(s)
Cell Proliferation/drug effects , Chondrocytes/drug effects , Chondrogenesis/drug effects , Chondroitin Sulfates/pharmacology , Aged , Aged, 80 and over , Animals , Cattle , Cell Differentiation/drug effects , Cell Line , Chondrocytes/metabolism , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/isolation & purification , Female , Humans , Isomerism , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , Sharks , Skates, Fish
SELECTION OF CITATIONS
SEARCH DETAIL
...