Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Colloid Interface Sci ; 613: 814-826, 2022 May.
Article in English | MEDLINE | ID: mdl-35074707

ABSTRACT

Recognition and capture of amyloid beta (Aß) is a challenging task for the early diagnosis of neurodegenerative disorders, such as Alzheimer's disease. Here, we report a novel KLVFF-modified nanomagnet based on magnetic nanoparticles (MNP) covered with a non-ionic amphiphilic ß-cyclodextrin (SC16OH) and decorated with KLVFF oligopeptide for the self-recognition of the homologous amino-acids sequence of Aß to collect Aß (1-42) peptide from aqueous samples. MNP@SC16OH and MNP@SC16OH/Ada-Pep nanoassemblies were fully characterized by complementary techniques both as solid powders and in aqueous dispersions. Single domain MNP@SC16OH/Ada-Pep nanomagnets of 20-40 nm were observed by TEM analysis. DLS and ζ-potential measurements revealed that MNP@SC16OH nanoassemblies owned in aqueous dispersion a hydrodynamic radius of about 150 nm, which was unaffected by Ada-Pep decoration, while the negative ζ-potential of MNP@SC16OH (-40 mV) became less negative (-30 mV) in MNP@SC16OH/Ada-Pep, confirming the exposition of positively charged KLVFF on nanomagnets surface. The ability of MNP@SC16OH/Ada-Pep to recruit Aß (1-42) in aqueous solution was evaluated by MALDI-TOF and compared with the ineffectiveness of undecorated MNP@SC16OH and VFLKF scrambled peptide-decorated nanoassemblies (MNP@SC16OH/Ada-scPep), pointing out the selectivity of KLVFF-decorated nanohybrid towards Aß (1-42). Finally, the property of nanomagnets to extract Aß in conditioned medium of cells over-producing Aß peptides was investigated as proof of concept of effectiveness of these nanomaterials as potential diagnostic tools.


Subject(s)
Amyloid beta-Peptides , Cyclodextrins , Oligopeptides , Peptide Fragments
2.
Biomacromolecules ; 18(4): 1134-1144, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28257182

ABSTRACT

In the development of new antibacterial therapeutic approaches to fight multidrug-resistant bacteria, antimicrobial photodynamic therapy (aPDT) represents a well-known alternative to treat local infections caused by different microorganisms. Here we present a polypropylene (PP) fabric finished with citrate-hydroxypropyl-ßCD polymer (PP-CD) entrapping the tetra-anionic 5,10,15,20-tetrakis(4-sulfonatophenyl)-21H,23H-porphine (TPPS) as photosensitizer-eluting scaffold (PP-CD/TPPS) for aPDT. The concept is based on host-guest complexation of porphyrin in the cavities of CDs immobilized on the PP fibers, followed by its sustained and controlled delivery in release medium and simultaneous photoinactivation of microorganisms. Morphology of fabric was characterized by optical (OM) and scanning electron microscopies (SEM). Optical properties were investigated by UV-vis absorption, steady- and time-resolved fluorescence emission spectroscopy. X-ray photoelectron spectroscopy (XPS) and FT-IR revealed the surface chemical composition and the distribution map of the molecular components on the fabric, respectively. Direct 1O2 determination allowed to assess the potential photodynamic activity of the fabric. Release kinetics of TPPS in physiological conditions pointed out the role of the CD cavity to control the TPPS elution. Photoantimicrobial activity of the porphyrin-loaded textile was investigated against both Gram-positive Staphylococcus aureus ATCC 29213 (S. aureus) and Gram-negative Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Optical microscopy coupled with UV-vis extinction and fluorescence spectra aim to ascertain the uptake of TPPS to S. aureus bacterial cells. Finally, PP-CD/TPPS fabric-treated S. aureus cells were photokilled of 99.98%. Moreover, low adhesion of S. aureus cells on textile was established. Conversely, no photodamage of fabric-treated P. aeruginosa cells was observed, together with their satisfying adhesion.


Subject(s)
Anti-Infective Agents/pharmacology , Carboxylic Acids/chemistry , Cyclodextrins/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Textiles , Microscopy, Electron, Scanning , Photochemotherapy , Photoelectron Spectroscopy , Polypropylenes/chemistry , Porphyrins/chemistry , Pseudomonas aeruginosa/drug effects , Spectrometry, Fluorescence , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
3.
Chem Cent J ; 10: 61, 2016.
Article in English | MEDLINE | ID: mdl-27790286

ABSTRACT

BACKGROUND: The introduction of an heterogeneously catalyzed gold-based alcohol oxidation process of broad applicability using a clean primary oxidant would be highly desirable. Gold is non toxic and carbonyl and carboxyl compounds are widely used to produce medicines, plastics, colorants, paints, detergents, fragrances, flavors, and other valued functional products. RESULTS: The sol-gel entrapment of gold nanoparticles in hybrid silica improves gold-based oxidation catalysis applied to the selective oxidation of alcohols with aqueous hydrogen peroxide as eco-friendly primary oxidant. Pronounced physical and chemical stabilization of the sol-gel entrapped Au nanoparticles is reflected in catalyst recyclability. CONCLUSIONS: Potential implications of these findings are significant, especially considering that the highly stable, mesoporous glassy catalyst is ideally suited for application in microreactors for carrying out the reaction under flow. Graphical abstractSelective oxidation of 2-phenylethanol over SiliaCat Au nanoparticle. Hydrogen peroxide is the clean oxidant.

4.
Biomacromolecules ; 13(6): 1805-17, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22571354

ABSTRACT

A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.


Subject(s)
Biocompatible Materials/chemical synthesis , Electrons , Gels/chemical synthesis , Nanoparticles/chemistry , Animals , Biocompatible Materials/chemistry , Cells, Cultured , Gels/chemistry , Mice , Mice, Inbred C57BL , Particle Size , Surface Properties
5.
Macromol Biosci ; 8(3): 247-59, 2008 Mar 10.
Article in English | MEDLINE | ID: mdl-18041108

ABSTRACT

The preparation and characterization of surface-PEGylated polymeric nanoparticles are described. These systems were obtained by UV irradiation of PHM and PHM-PEG(2000) as an inverse microemulsion, using an aqueous solution of the PHM/PHM-PEG(2000) copolymer mixture as the internal phase and triacetin saturated with water as the external phase, and characterized by dimensional analysis, zeta-potential measurements and XPS. in vitro biological tests demonstrated their cell compatibility and their ability to escape from phagocytosis. Rivastigmine was encapsulated into the nanoparticle structure and drug-release profiles from loaded samples were investigated in PBS at pH = 7.4 and human plasma.


Subject(s)
Drug Delivery Systems/methods , Nanoparticles/chemistry , Peptides/chemistry , Phenylcarbamates/chemistry , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Delayed-Action Preparations , Hemolysis/drug effects , Humans , Molecular Structure , Phenylcarbamates/pharmacology , Rivastigmine , Triacetin , Ultraviolet Rays
6.
J Phys Chem B ; 109(7): 2821-7, 2005 Feb 24.
Article in English | MEDLINE | ID: mdl-16851293

ABSTRACT

Gold catalysts supported on cerium oxide were prepared by solvated metal atom dispersion (SMAD), by deposition-precipitation (DP), and by coprecipitation (CP) methods and were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The catalytic activity was tested in the CO oxidation reaction. The structural and surface analyses evidenced the presence of a modified ceria phase in the case of the DP sample and the presence of pure ceria and gold metal crystallites in the case of the SMAD and CP samples. The DP sample, after a mild treatment in air at 393 K, exhibited only ionic gold, and it was very active below 273 K. By comparing the activities of the different catalysts, it is suggested that the presence of small gold particles, as obtained by the SMAD technique, is not the main requisite for the achievement of the highest CO conversion. The strong interaction between ionic gold and ceria, by enhancing the ceria surface oxygen reducibility, may determine the particularly high activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...