Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
NMR Biomed ; : e5197, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822595

ABSTRACT

The accurate segmentation of individual muscles is essential for quantitative MRI analysis of thigh images. Deep learning methods have achieved state-of-the-art results in segmentation, but they require large numbers of labeled data to perform well. However, labeling individual thigh muscles slice by slice for numerous volumes is a laborious and time-consuming task, which limits the availability of annotated datasets. To address this challenge, self-supervised learning (SSL) emerges as a promising technique to enhance model performance by pretraining the model on unlabeled data. A recent approach, called positional contrastive learning, exploits the information given by the axial position of the slices to learn features transferable on the segmentation task. The aim of this work was to propose positional contrastive SSL for the segmentation of individual thigh muscles from MRI acquisitions in a population of elderly healthy subjects and to evaluate it on different levels of limited annotated data. An unlabeled dataset of 72 T1w MRI thigh acquisitions was available for SSL pretraining, while a labeled dataset of 52 volumes was employed for the final segmentation task, split into training and test sets. The effectiveness of SSL pretraining to fine-tune a U-Net architecture for thigh muscle segmentation was compared with that of a randomly initialized model (RND), considering an increasing number of annotated volumes (S = 1, 2, 5, 10, 20, 30, 40). Our results demonstrated that SSL yields substantial improvements in Dice similarity coefficient (DSC) when using a very limited number of labeled volumes (e.g., for S $$ S $$ = 1, DSC 0.631 versus 0.530 for SSL and RND, respectively). Moreover, enhancements are achievable even when utilizing the full number of labeled subjects, with DSC = 0.927 for SSL and 0.924 for RND. In conclusion, positional contrastive SSL was effective in obtaining more accurate thigh muscle segmentation, even with a very low number of labeled data, with a potential impact of speeding up the annotation process in clinics.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38927816

ABSTRACT

Muscular dystrophies present diagnostic challenges, requiring accurate classification for effective diagnosis and treatment. This study investigates the efficacy of deep learning methodologies in classifying these disorders using skeletal muscle MRI scans. Specifically, we assess the performance of the Swin Transformer (SwinT) architecture against traditional convolutional neural networks (CNNs) in distinguishing between healthy individuals, Becker muscular dystrophy (BMD), and limb-girdle muscular Dystrophy type 2 (LGMD2) patients. Moreover, 3T MRI scans from a retrospective dataset of 75 scans (from 54 subjects) were utilized, with multiparametric protocols capturing various MRI contrasts, including T1-weighted and Dixon sequences. The dataset included 17 scans from healthy volunteers, 27 from BMD patients, and 31 from LGMD2 patients. SwinT and CNNs were trained and validated using a subset of the dataset, with the performance evaluated based on accuracy and F-score. Results indicate the superior accuracy of SwinT (0.96), particularly when employing fat fraction (FF) images as input; it served as a valuable parameter for enhancing classification accuracy. Despite limitations, including a modest cohort size, this study provides valuable insights into the application of AI-driven approaches for precise neuromuscular disorder classification, with potential implications for improving patient care.

3.
BMC Infect Dis ; 21(1): 665, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34238234

ABSTRACT

BACKGROUND: As SARS-CoV-2 testing expands, particularly to widespread asymptomatic testing, high sensitivity point-of-care PCR platforms may optimise potential benefits from pooling multiple patients' samples. METHOD: We tested patients and asymptomatic citizens for SARS-CoV-2, exploring the efficiency and utility of CovidNudge (i) for detection in individuals' sputum (compared to nasopharyngeal swabs), (ii) for detection in pooled sputum samples, and (iii) by modelling roll out scenarios for pooled sputum testing. RESULTS: Across 295 paired samples, we find no difference (p = 0.1236) in signal strength for sputum (mean amplified replicates (MAR) 25.2, standard deviation (SD) 14.2, range 0-60) compared to nasopharyngeal swabs (MAR 27.8, SD 12.4, range 6-56). At 10-sample pool size we find some drop in absolute strength of signal (individual sputum MAR 42.1, SD 11.8, range 13-60 vs. pooled sputum MAR 25.3, SD 14.6, range 1-54; p < 0.0001), but only marginal drop in sensitivity (51/53,96%). We determine a limit of detection of 250 copies/ml for an individual test, rising only four-fold to 1000copies/ml for a 10-sample pool. We find optimal pooled testing efficiency to be a 12-3-1-sample model, yet as prevalence increases, pool size should decrease; at 5% prevalence to maintain a 75% probability of negative first test, 5-sample pools are optimal. CONCLUSION: We describe for the first time the use of sequentially dipped sputum samples for rapid pooled point of care SARS-CoV-2 PCR testing. The potential to screen asymptomatic cohorts rapidly, at the point-of-care, with PCR, offers the potential to quickly identify and isolate positive individuals within a population "bubble".


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , Point-of-Care Testing , SARS-CoV-2/isolation & purification , Sputum/virology , Diagnostic Tests, Routine , Humans , Limit of Detection , Nasopharynx/virology , Sensitivity and Specificity , Viral Load
4.
Eur Respir J ; 51(6)2018 06.
Article in English | MEDLINE | ID: mdl-29748309

ABSTRACT

We used whole-genome sequencing (WGS) to delineate transmission networks and investigate the benefits of WGS during cluster investigation.We included clustered cases of multidrug-resistant (MDR) tuberculosis (TB)/extensively drug-resistant (XDR) TB linked by mycobacterial interspersed repetitive unit variable tandem repeat (MIRU-VNTR) strain typing or epidemiological information in the national cluster B1006, notified between 2007 and 2013 in the UK. We excluded from further investigation cases whose isolates differed by greater than 12 single nucleotide polymorphisms (SNPs). Data relating to patients' social networks were collected.27 cases were investigated and 22 had WGS, eight of which (36%) were excluded as their isolates differed by more than 12 SNPs to other cases. 18 cases were ruled into the transmission network based on genomic and epidemiological information. Evidence of transmission was inconclusive in seven out of 18 cases (39%) in the transmission network following WGS and epidemiological investigation.This investigation of a drug-resistant TB cluster illustrates the opportunities and limitations of WGS in understanding transmission in a setting with a high proportion of migrant cases. The use of WGS should be combined with classical epidemiological methods. However, not every cluster will be solvable, regardless of the quality of genomic data.


Subject(s)
Extensively Drug-Resistant Tuberculosis/epidemiology , Polymorphism, Single Nucleotide , Tuberculosis, Multidrug-Resistant/epidemiology , Whole Genome Sequencing , Bacterial Typing Techniques , Cluster Analysis , Disease Outbreaks , Extensively Drug-Resistant Tuberculosis/transmission , Humans , Minisatellite Repeats , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/transmission , United Kingdom/epidemiology
5.
J Public Health (Oxf) ; 40(2): e66-e73, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29106587

ABSTRACT

Background: We describe an outbreak that contributed to a near doubling of the incidence of tuberculosis in Southampton, UK. We examine the importance of 24 locus mycobacterial interspersed repetitive unit variable number tandem repeat (MIRU-VNTR) genotyping in its identification and management and the role of whole genome sequencing (WGS) in tracing the spread of the strain. Methods: Outbreak cases were defined as those diagnosed between January and December 2011 with indistinguishable 24 locus-MIRU-VNTR genotypes or, cases linked epidemiologically. A cluster questionnaire was administered by TB nurses to identify contacts and social settings. Results: Overall, 25 patients fulfilled the case definition. No cases with this MIRU-VNTR genotype had been detected in the UK previously. Connections were found between all cases through household contacts or social venues including a football club, Internet cafe and barber's shop. Public health actions included extended contact tracing, venue screening and TB awareness-raising. The outbreak resulted in a high rate of transmission and high incidence of clinical disease among contacts. Conclusions: This outbreak illustrates the value of combining active case-finding with prospective MIRU-VNTR genotyping to identify settings to undertake public health action. In addition WGS revealed that the VNTR-defined cluster was a single outbreak and that active TB transmission not reactivation was responsible for this outbreak in non-UK born individuals.


Subject(s)
Mycobacterium tuberculosis/genetics , Tuberculosis/epidemiology , Tuberculosis/genetics , Adolescent , Adult , Child , Child, Preschool , Disease Outbreaks , Female , Genotype , Humans , Infant , Male , Surveys and Questionnaires , United Kingdom/epidemiology , Whole Genome Sequencing , Young Adult
6.
PLoS Med ; 13(10): e1002137, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27701423

ABSTRACT

BACKGROUND: A large isoniazid-resistant tuberculosis outbreak centred on London, United Kingdom, has been ongoing since 1995. The aim of this study was to investigate the power and value of whole genome sequencing (WGS) to resolve the transmission network compared to current molecular strain typing approaches, including analysis of intra-host diversity within a specimen, across body sites, and over time, with identification of genetic factors underlying the epidemiological success of this cluster. METHODS AND FINDINGS: We sequenced 344 outbreak isolates from individual patients collected over 14 y (2 February 1998-22 June 2012). This demonstrated that 96 (27.9%) were indistinguishable, and only one differed from this major clone by more than five single nucleotide polymorphisms (SNPs). The maximum number of SNPs between any pair of isolates was nine SNPs, and the modal distance between isolates was two SNPs. WGS was able to reveal the direction of transmission of tuberculosis in 16 cases within the outbreak (4.7%), including within a multidrug-resistant cluster that carried a rare rpoB mutation associated with rifampicin resistance. Eleven longitudinal pairs of patient pulmonary isolates collected up to 48 mo apart differed from each other by between zero and four SNPs. Extrapulmonary dissemination resulted in acquisition of a SNP in two of five cases. WGS analysis of 27 individual colonies cultured from a single patient specimen revealed ten loci differed amongst them, with a maximum distance between any pair of six SNPs. A limitation of this study, as in previous studies, is that indels and SNPs in repetitive regions were not assessed due to the difficulty in reliably determining this variation. CONCLUSIONS: Our study suggests that (1) certain paradigms need to be revised, such as the 12 SNP distance as the gold standard upper threshold to identify plausible transmissions; (2) WGS technology is helpful to rule out the possibility of direct transmission when isolates are separated by a substantial number of SNPs; (3) the concept of a transmission chain or network may not be useful in institutional or household settings; (4) the practice of isolating single colonies prior to sequencing is likely to lead to an overestimation of the number of SNPs between cases resulting from direct transmission; and (5) despite appreciable genomic diversity within a host, transmission of tuberculosis rarely results in minority variants becoming dominant. Thus, whilst WGS provided some increased resolution over variable number tandem repeat (VNTR)-based clustering, it was insufficient for inferring transmission in the majority of cases.


Subject(s)
Disease Outbreaks , Genome, Bacterial , Isoniazid/pharmacology , Mycobacterium tuberculosis/genetics , Sequence Analysis, DNA , Tuberculosis/epidemiology , Adult , Child , DNA, Bacterial , Humans , London/epidemiology , Minisatellite Repeats , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Single Nucleotide , Retrospective Studies , Tuberculosis/drug therapy , Tuberculosis/microbiology , Tuberculosis/transmission , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/transmission
7.
Infect Genet Evol ; 36: 517-523, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26319998

ABSTRACT

We conducted a prospective study to establish factors associated with survival in tuberculosis patients in Russia including social, clinical and pathogen-related genetic parameters. Specifically we wished to determine whether different strains/clades of the Beijing lineage exerted a differential effect of survival. HIV-negative culture-confirmed cases were recruited during 2008-2010 across Samara Oblast and censored in December 2011. Molecular characterization was performed by a combination of spoligotyping, multilocus VNTR typing and whole genome sequencing (WGS). We analyzed 2602 strains and detected a high prevalence of Beijing family (n=1933; 74%) represented largely by two highly homogenous dominant clades A (n=794) and B (n=402) and non-A/non-B (n=737). Multivariable analysis of 1366 patients with full clinical and genotyping data showed that multi- and extensive drug resistance (HR=1.86; 95%CI: 1.52, 2.28 and HR=2.19; 95%CI: 1.55, 3.11) had the largest impact on survival. In addition older age, extensive lung damage, shortness of breath, treatment in the past and alcohol abuse reduced survival time. After adjustment for clinical and demographic predictors there was evidence that clades A and B combined were associated with poorer survival than other Beijing strains (HR=0.48; 95%CI 0.34, 0.67). All other pathogen-related factors (polymorphisms in genes plcA, plcB, plcC, lipR, dosT and pks15/1) had no effect on survival. In conclusion, drug resistance exerted the greatest effect on survival of TB patients. Nevertheless we provide evidence for the independent biological effect on survival of different Beijing family strains even within the same defined geographical population. Better understanding of the role of different strain factors in active disease and their influence on outcome is essential.


Subject(s)
Genotype , HIV Seronegativity , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology , Tuberculosis/mortality , Female , Genetic Linkage , Genome, Bacterial , Humans , Kaplan-Meier Estimate , Male , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Proportional Hazards Models , Prospective Studies , Risk Factors , Russia/epidemiology , Tuberculosis/epidemiology
8.
Health Technol Assess ; 19(34): 1-188, vii-viii, 2015 May.
Article in English | MEDLINE | ID: mdl-25952553

ABSTRACT

BACKGROUND: Drug-resistant tuberculosis (TB), especially multidrug-resistant (MDR, resistance to rifampicin and isoniazid) disease, is associated with a worse patient outcome. Drug resistance diagnosed using microbiological culture takes days to weeks, as TB bacteria grow slowly. Rapid molecular tests for drug resistance detection (1 day) are commercially available and may promote faster initiation of appropriate treatment. OBJECTIVES: To (1) conduct a systematic review of evidence regarding diagnostic accuracy of molecular genetic tests for drug resistance, (2) conduct a health-economic evaluation of screening and diagnostic strategies, including comparison of alternative models of service provision and assessment of the value of targeting rapid testing at high-risk subgroups, and (3) construct a transmission-dynamic mathematical model that translates the estimates of diagnostic accuracy into estimates of clinical impact. REVIEW METHODS AND DATA SOURCES: A standardised search strategy identified relevant studies from EMBASE, PubMed, MEDLINE, Bioscience Information Service (BIOSIS), System for Information on Grey Literature in Europe Social Policy & Practice (SIGLE) and Web of Science, published between 1 January 2000 and 15 August 2013. Additional 'grey' sources were included. Quality was assessed using quality assessment of diagnostic accuracy studies version 2 (QUADAS-2). For each diagnostic strategy and population subgroup, a care pathway was constructed to specify which medical treatments and health services that individuals would receive from presentation to the point where they either did or did not complete TB treatment successfully. A total cost was estimated from a health service perspective for each care pathway, and the health impact was estimated in terms of the mean discounted quality-adjusted life-years (QALYs) lost as a result of disease and treatment. Costs and QALYs were both discounted at 3.5% per year. An integrated transmission-dynamic and economic model was used to evaluate the cost-effectiveness of introducing rapid molecular testing (in addition to culture and drug sensitivity testing). Probabilistic sensitivity analysis was performed to evaluate the impact on cost-effectiveness of diagnostic and treatment time delays, diagnosis and treatment costs, and associated QALYs. RESULTS: A total of 8922 titles and abstracts were identified, with 557 papers being potentially eligible. Of these, 56 studies contained sufficient test information for analysis. All three commercial tests performed well when detecting drug resistance in clinical samples, although with evidence of heterogeneity between studies. Pooled sensitivity for GenoType® MTBDRplus (Hain Lifescience, Nehren, Germany) (isoniazid and rifampicin resistance), INNO-LiPA Rif.TB® (Fujirebio Europe, Ghent, Belgium) (rifampicin resistance) and Xpert® MTB/RIF (Cepheid Inc., Sunnyvale, CA, USA) (rifampicin resistance) was 83.4%, 94.6%, 95.4% and 96.8%, respectively; equivalent pooled specificity was 99.6%, 98.2%, 99.7% and 98.4%, respectively. Results of the transmission model suggest that all of the rapid assays considered here, if added to the current diagnostic pathway, would be cost-saving and achieve a reduction in expected QALY loss compared with current practice. GenoType MTBDRplus appeared to be the most cost-effective of the rapid tests in the South Asian population, although results were similar for GeneXpert. In all other scenarios GeneXpert appeared to be the most cost-effective strategy. CONCLUSIONS: Rapid molecular tests for rifampicin and isoniazid resistance were sensitive and specific. They may also be cost-effective when added to culture drug susceptibility testing in the UK. There is global interest in point-of-care testing and further work is needed to review the performance of emerging tests and the wider health-economic impact of decentralised testing in clinics and primary care, as well as non-health-care settings, such as shelters and prisons. STUDY REGISTRATION: This study is registered as PROSPERO CRD42011001537. FUNDING: The National Institute for Health Research Health Technology Assessment programme.


Subject(s)
Nucleic Acid Amplification Techniques/economics , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Pulmonary/diagnosis , Antitubercular Agents/pharmacology , Bacteriological Techniques , Cost-Benefit Analysis , Drug Resistance, Microbial , Humans , Isoniazid/pharmacology , Models, Econometric , Patient Acceptance of Health Care , Quality-Adjusted Life Years , Rifampin/pharmacology , Sequence Analysis , State Medicine , Technology Assessment, Biomedical , Time Factors , Tuberculosis, Multidrug-Resistant/transmission , Tuberculosis, Pulmonary/transmission , United Kingdom
10.
Infect Immun ; 83(6): 2213-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25776753

ABSTRACT

Virulence factors (VFs) contribute to the emergence of new human Mycobacterium tuberculosis strains, are lineage dependent, and are relevant to the development of M. tuberculosis drugs/vaccines. VFs were sought within M. tuberculosis lineage 3, which has the Central Asian (CAS) spoligotype. Three isolates were selected from clusters previously identified as dominant in London, United Kingdom. Strain-associated virulence was studied in guinea pig, monocyte-derived macrophage, and lysozyme resistance assays. Whole-genome sequencing, single nucleotide polymorphism (SNP) analysis, and a literature review contributed to the identification of SNPs of interest. The animal model revealed borderline differences in strain-associated pathogenicity. Ex vivo, isolate C72 exhibited statistically significant differences in intracellular growth relative to C6 and C14. SNP candidates inducing lower fitness levels included 123 unique nonsynonymous SNPs, including three located in genes (lysX, caeA, and ponA2) previously identified as VFs in the laboratory-adapted reference strain H37Rv and shown to confer lysozyme resistance. C72 growth was most affected by lysozyme in vitro. A BLAST search revealed that all three SNPs of interest (C35F, P76Q, and P780R) also occurred in Tiruvallur, India, and in Uganda. Unlike C72, however, no single isolate identified through BLAST carried all three SNPs simultaneously. CAS isolates representative of three medium-sized human clusters demonstrated differential outcomes in models commonly used to estimate strain-associated virulence, supporting the idea that virulence varies within, not just across, M. tuberculosis lineages. Three VF SNPs of interest were identified in two additional locations worldwide, which suggested independent selection and supported a role for these SNPs in virulence. The relevance of lysozyme resistance to strain virulence remains to be established.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , Adult , Asia/epidemiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Female , Gene Expression Regulation, Bacterial , Humans , Male , Middle Aged , Muramidase , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Polymorphism, Single Nucleotide , Tuberculosis/epidemiology , Virulence , Virulence Factors/metabolism , Young Adult
11.
Int J Antimicrob Agents ; 45(4): 406-12, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25717028

ABSTRACT

The objective of this study was to assess the activity of amikacin in combination with doxycycline against clinical strains of Mycobacterium tuberculosis in the search for new strategies against multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis. The study included 28 clinical M. tuberculosis strains, comprising 5 fully susceptible, 1 isoniazid-resistant, 17 MDR, 1 poly-resistant (streptomycin/isoniazid), 1 rifampicin-resistant and 3 XDR isolates, as well as the laboratory strain M. tuberculosis H37Rv. Minimum inhibitory concentrations (MICs) were determined using a modified chequerboard methodology in a BACTEC™ MGIT™ 960 System. Fractional inhibitory concentration indices (FICIs) were calculated, and synergy, indifference or antagonism was assessed. Whole-genome sequencing was performed to investigate the genetic basis of synergy, indifference or antagonism. The MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were, respectively, 0.5 mg/L and 1.0 mg/L for amikacin and 8 mg/L and 16 mg/L for doxycycline. The combination of amikacin and doxycycline showed a synergistic effect in 18 of the 29 strains tested and indifference in 11 strains. Antagonism was not observed. A streptomycin resistance mutation (K43R) was associated with indifference. In conclusion, the benefit of addition of doxycycline to an amikacin-containing regimen should be explored since in vitro results in this study indicate either synergy or indifference. Moreover, doxycycline also has immunomodulatory effects.


Subject(s)
Amikacin/pharmacology , Antitubercular Agents/pharmacology , Doxycycline/pharmacology , Drug Resistance, Multiple, Bacterial , Drug Synergism , Mycobacterium tuberculosis/drug effects , Tuberculosis, Multidrug-Resistant/microbiology , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/isolation & purification , Pilot Projects
13.
mBio ; 5(5): e01819-14, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25336456

ABSTRACT

Pyrazinamide (PZA) is a prodrug that is converted to pyrazinoic acid by the enzyme pyrazinamidase, encoded by the pncA gene in Mycobacterium tuberculosis. Molecular identification of mutations in pncA offers the potential for rapid detection of pyrazinamide resistance (PZA(r)). However, the genetic variants are highly variable and scattered over the full length of pncA, complicating the development of a molecular test. We performed a large multicenter study assessing pncA sequence variations in 1,950 clinical isolates, including 1,142 multidrug-resistant (MDR) strains and 483 fully susceptible strains. The results of pncA sequencing were correlated with phenotype, enzymatic activity, and structural and phylogenetic data. We identified 280 genetic variants which were divided into four classes: (i) very high confidence resistance mutations that were found only in PZA(r) strains (85%), (ii) high-confidence resistance mutations found in more than 70% of PZA(r) strains, (iii) mutations with an unclear role found in less than 70% of PZA(r) strains, and (iv) mutations not associated with phenotypic resistance (10%). Any future molecular diagnostic assay should be able to target and identify at least the very high and high-confidence genetic variant markers of PZA(r); the diagnostic accuracy of such an assay would be in the range of 89.5 to 98.8%. Importance: Conventional phenotypic testing for pyrazinamide resistance in Mycobacterium tuberculosis is technically challenging and often unreliable. The development of a molecular assay for detecting pyrazinamide resistance would be a breakthrough, directly overcoming both the limitations of conventional testing and its related biosafety issues. Although the main mechanism of pyrazinamide resistance involves mutations inactivating the pncA enzyme, the highly diverse genetic variants scattered over the full length of the pncA gene and the lack of a reliable phenotypic gold standard hamper the development of molecular diagnostic assays. By analyzing a large number of strains collected worldwide, we have classified the different genetic variants based on their predictive value for resistance which should lead to more rapid diagnostic tests. This would assist clinicians in improving treatment regimens for patients.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Genetic Variation , Mycobacterium tuberculosis/drug effects , Pyrazinamide/pharmacology , Humans , Mutation , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Sequence Analysis, DNA , Tuberculosis/microbiology
14.
Asian Pac J Allergy Immunol ; 32(2): 124-32, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25003725

ABSTRACT

BACKGROUND: The Beijing strain of Mycobacterium tuberculosis (MTB) is of great concern because this hypervirulent strain has caused numerous tuberculosis outbreaks. However, the mechanisms that allow the MTB Beijing strain to be highly pathogenic remain unclear and previous studies have revealed heterogeneity within this family. OBJECTIVE: To determine the association between some phenotypic characteristics and phylogroups of the Beijing strain of MTB. METHODS: Eight Beijing strains, 5 modern and 3 ancestral sublineages, were selected from the phylogroups of MTB. The selection was based on copy number of IS6110 at NTF, region of differences, and single nucleotide polymorphisms. The abilities of these strains to grow intracellularly in THP-1 macrophages, to induce apoptosis, necrosis, and cytokines production were examined using quantitative real-time PCR and commercially available ELISA kits, respectively. RESULTS: There were some significant differences between the two sublineages of the Beijing strain of MTB. The ancestral Beijing sublineages showed higher intracellular growth rates (p < 0.05) and necrosis induction rates (p < 0.01) than the modern Beijing sublineages. By contrast, the modern Beijing sublineages induced lower apoptosis and protective cytokine responses, i.e., TNF-α (p < 0.05) and IL-6 (p < 0.01) and higher non-protective IL-10 response. The modern Beijing sublineages may have evolved so that they have greater ability to diminish host defense mechanisms. The slower growth rate and reduced necrosis induction in host cells might allow the bacteria to cause a persistent infection. CONCLUSION: The results revealed a phylogroup-associated heterogeneity of phenotypes among MTB Beijing sublineages.


Subject(s)
Cytokines/metabolism , Evolution, Molecular , Mycobacterium tuberculosis , Polymorphism, Genetic , Tuberculosis/genetics , Tuberculosis/metabolism , Cell Line, Tumor , China , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/pathogenicity
15.
Nat Genet ; 46(3): 279-86, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24464101

ABSTRACT

The molecular mechanisms determining the transmissibility and prevalence of drug-resistant tuberculosis in a population were investigated through whole-genome sequencing of 1,000 prospectively obtained patient isolates from Russia. Two-thirds belonged to the Beijing lineage, which was dominated by two homogeneous clades. Multidrug-resistant (MDR) genotypes were found in 48% of isolates overall and in 87% of the major clades. The most common rpoB mutation was associated with fitness-compensatory mutations in rpoA or rpoC, and a new intragenic compensatory substitution was identified. The proportion of MDR cases with extensively drug-resistant (XDR) tuberculosis was 16% overall, with 65% of MDR isolates harboring eis mutations, selected by kanamycin therapy, which may drive the expansion of strains with enhanced virulence. The combination of drug resistance and compensatory mutations displayed by the major clades confers clinical resistance without compromising fitness and transmissibility, showing that, in addition to weaknesses in the tuberculosis control program, biological factors drive the persistence and spread of MDR and XDR tuberculosis in Russia and beyond.


Subject(s)
Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis, Multidrug-Resistant/transmission , Bacterial Proteins/genetics , DNA-Directed RNA Polymerases , Drug Resistance, Multiple, Bacterial/genetics , Evolution, Molecular , Extensively Drug-Resistant Tuberculosis/epidemiology , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/transmission , Genes, Bacterial , Humans , Mutation , Mycobacterium tuberculosis/pathogenicity , Phylogeny , Polymorphism, Single Nucleotide , Prevalence , Prospective Studies , Russia/epidemiology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/microbiology , Virulence/genetics
16.
BMC Med ; 11: 190, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23987891

ABSTRACT

In this article, we give an overview of new technologies for the diagnosis of tuberculosis (TB) and drug resistance, consider their advantages over existing methodologies, broad issues of cost, cost-effectiveness and programmatic implementation, and their clinical as well as public health impact, focusing on the industrialized world. Molecular nucleic-acid amplification diagnostic systems have high specificity for TB diagnosis (and rifampicin resistance) but sensitivity for TB detection is more variable. Nevertheless, it is possible to diagnose TB and rifampicin resistance within a day and commercial automated systems make this possible with minimal training. Although studies are limited, these systems appear to be cost-effective. Most of these tools are of value clinically and for public health use. For example, whole genome sequencing of Mycobacterium tuberculosis offers a powerful new approach to the identification of drug resistance and to map transmission at a community and population level.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Bacterial , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/statistics & numerical data , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/diagnosis , Genome, Bacterial , Humans , Sequence Analysis, DNA/methods
17.
Genome Res ; 22(4): 735-45, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22294518

ABSTRACT

Extensively drug-resistant (XDR) tuberculosis (TB), which is resistant to both first- and second-line antibiotics, is an escalating problem, particularly in the Russian Federation. Molecular fingerprinting of 2348 Mycobacterium tuberculosis isolates collected in Samara Oblast, Russia, revealed that 72% belonged to the Beijing lineage, a genotype associated with enhanced acquisition of drug resistance and increased virulence. Whole-genome sequencing of 34 Samaran isolates, plus 25 isolates representing global M. tuberculosis complex diversity, revealed that Beijing isolates originating in Eastern Europe formed a monophyletic group. Homoplasic polymorphisms within this clade were almost invariably associated with antibiotic resistance, indicating that the evolution of this population is primarily driven by drug therapy. Resistance genotypes showed a strong correlation with drug susceptibility phenotypes. A novel homoplasic mutation in rpoC, found only in isolates carrying a common rpoB rifampicin-resistance mutation, may play a role in fitness compensation. Most multidrug-resistant (MDR) isolates also had mutations in the promoter of a virulence gene, eis, which increase its expression and confer kanamycin resistance. Kanamycin therapy may thus select for mutants with increased virulence, helping preserve bacterial fitness and promoting transmission of drug-resistant TB strains. The East European clade was dominated by two MDR clusters, each disseminated across Samara. Polymorphisms conferring fluoroquinolone resistance were independently acquired multiple times within each cluster, indicating that XDR TB is currently not widely transmitted.


Subject(s)
Evolution, Molecular , Extensively Drug-Resistant Tuberculosis/microbiology , Genome, Bacterial/genetics , Mycobacterium tuberculosis/genetics , Bacterial Proteins/genetics , DNA Fingerprinting , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Drug Resistance, Multiple/genetics , Genotype , Geography , Humans , Microbial Sensitivity Tests , Models, Genetic , Mutation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/pathogenicity , Phylogeny , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Russia , Sequence Analysis, DNA , Species Specificity , Virulence/genetics
18.
Vaccine ; 30(2): 459-65, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22079078

ABSTRACT

Preventing latently infected or inadequately treated individuals from progressing to active disease could make a major impact on tuberculosis (TB) control worldwide. The purpose of this study was to evaluate a new approach to prevent reactivation and TB relapse that combines drug treatment and vaccination. Mycobacterium tuberculosis harbors a gene called mce1R that, in vivo, negatively regulates a 13-gene cluster called the mce1 operon. In a Cornell mouse model, BALB/c mice infected with M. tuberculosis H37Rv disrupted in mce1R consistently develop latent infection and reactivation disease. We used this new mouse model to test a recombinant M. tuberculosis cell wall protein (Mce1A), encoded by a gene in the mce1 operon, for its ability to prevent post-treatment TB. At 32 weeks of follow-up, a complete sterilizing protection was observed in lungs of the vaccinated mice. Mce1A but not phosphate-buffered saline administered intraperitoneally during the period of latent infection prevented disease progression and proliferation of M. tuberculosis mce1R mutant. The only visible lung lesions in vaccinated mice included small clusters of lymphocytes, while the unvaccinated mice showed progressively enlarging granulomas comprised of foamy macrophages surrounded by lymphocytes. The combination of anti-TB drugs and a vaccine may serve as a powerful treatment modality against TB reactivation and relapse.


Subject(s)
Antitubercular Agents/administration & dosage , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines/administration & dosage , Tuberculosis/drug therapy , Tuberculosis/immunology , Animals , Bacterial Load , Bacterial Proteins/genetics , Disease Models, Animal , Female , Granuloma/pathology , Lung/immunology , Lung/microbiology , Lung/pathology , Lymphocytes/immunology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/pathogenicity , Secondary Prevention , Tuberculosis/microbiology , Tuberculosis/pathology
19.
J Infect Dis ; 202(5): 752-9, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20629532

ABSTRACT

BACKGROUND: The reactivation of tuberculosis arises in persons who are latently infected and in those who have been previously treated. The mechanism of the reactivation of tuberculosis in either situation is not well understood. A 13-gene mce1 operon of Mycobacterium tuberculosis was previously shown to be associated with latent infection in mice and may also play a role in reactivation. METHODS: We tested mce1 operon M. tuberculosis mutants in a Cornell mouse model to examine disease progression and reactivation. RESULTS: In BALB/c mice, the wild-type, mce1 operon mutant, and mce1R (negative transcriptional regulator of the mce1 operon) mutant M. tuberculosis strains were equally susceptible to orally administered isoniazid and pyrazinamide. However, after cessation of the treatment, the mce1R mutant rapidly and progressively proliferated in mouse lungs and spleens, whereas the other strains remained latent. The reactivation of the mce1R mutant was associated with disease progression in the mouse lungs. CONCLUSION: This observation demonstrates that the constitutive expression of the mce1 genes by M. tuberculosis in the latent state can cause a reactivation of tuberculosis. The constitutive expression of the mce1 genes in the mce1R mutant may allow this mutant to maintain its lipid metabolism, enabling it to survive long-term and proliferate inside granulomas.


Subject(s)
Antitubercular Agents , Bacterial Proteins/genetics , Isoniazid , Mutation , Mycobacterium tuberculosis/growth & development , Tuberculosis, Pulmonary/drug therapy , Animals , Antitubercular Agents/therapeutic use , Disease Models, Animal , Female , Humans , Isoniazid/therapeutic use , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Operon/genetics , Pyrazinamide/therapeutic use , Time Factors , Tuberculosis, Pulmonary/microbiology
20.
Diagn Microbiol Infect Dis ; 61(2): 214-6, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18308497

ABSTRACT

We studied a carbapenem-susceptible Pseudomonas aeruginosa strain that does not produce carbapenemase but carries the metallo-beta-lactamase gene bla(SPM) identical in sequence to the gene of other fully carbapenem-resistant isolates. Carbapenem-susceptible isolates may be silent reservoirs of the bla(SPM) gene.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Hospitals, University , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...