Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38187535

ABSTRACT

PIEZO1 channels play a critical role in numerous physiological processes by transducing diverse mechanical stimuli into electrical and chemical signals. Recent studies underscore the importance of endogenous PIEZO1 activity and localization in regulating mechanotransduction. To enable physiologically and clinically relevant human-based studies, we genetically engineered human induced pluripotent stem cells (hiPSCs) to express a HaloTag fused to endogenous PIEZO1. Combined with super-resolution imaging, our chemogenetic approach allows precise visualization of PIEZO1 in various cell types. Further, the PIEZO1-HaloTag hiPSC technology allows non-invasive monitoring of channel activity via Ca2+-sensitive HaloTag ligands, with temporal resolution approaching that of patch clamp electrophysiology. Using lightsheet imaging of hiPSC-derived neural organoids, we also achieve molecular scale PIEZO1 imaging in three-dimensional tissue samples. Our advances offer a novel platform for studying PIEZO1 mechanotransduction in human cells and tissues, with potential for elucidating disease mechanisms and development of targeted therapeutics.

2.
J Cell Sci ; 135(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36274586

ABSTRACT

Mesenchymal condensation is a prevalent morphogenetic transition that is essential in chondrogenesis. However, the current understanding of condensation mechanisms is limited. In vivo, progenitor cells directionally migrate from the surrounding loose mesenchyme towards regions of increasing matrix adherence (the condensation centers), which is accompanied by the upregulation of fibronectin. Here, we focused on the mechanisms of cell migration during mesenchymal cell condensation and the effects of matrix adherence. Dendrimer-based nanopatterns of the cell-adhesive peptide arginine-glycine-aspartic acid (RGD), which is present in fibronectin, were used to regulate substrate adhesion. We recorded collective and single-cell migration of mesenchymal stem cells, under chondrogenic induction, using live-cell imaging. Our results show that the cell migration mode of single cells depends on substrate adhesiveness, and that cell directionality controls cell condensation and the fusion of condensates. Inhibition experiments revealed that cell-cell interactions mediated by N-cadherin (also known as CDH2) are also pivotal for directional migration of cell condensates by maintaining cell-cell cohesion, thus suggesting a fine interplay between cell-matrix and cell-cell adhesions. Our results shed light on the role of cell interactions with a fibronectin-depositing matrix during chondrogenesis in vitro, with possible applications in regenerative medicine. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Chondrogenesis , Mesenchymal Stem Cells , Humans , Fibronectins/metabolism , Mesenchymal Stem Cells/metabolism , Mesoderm , Cadherins/metabolism , Cell Adhesion , Cell Differentiation
3.
Front Bioeng Biotechnol ; 10: 1002967, 2022.
Article in English | MEDLINE | ID: mdl-36147534

ABSTRACT

Cells sense their environment through the cell membrane receptors. Interaction with extracellular ligands induces receptor clustering at the nanoscale, assembly of the signaling complexes in the cytosol and activation of downstream signaling pathways, regulating cell response. Nanoclusters of receptors can be further organized hierarchically in the cell membrane at the meso- and micro-levels to exert different biological functions. To study and guide cell response, cell culture substrates have been engineered with features that can interact with the cells at different scales, eliciting controlled cell responses. In particular, nanoscale features of 1-100 nm in size allow direct interaction between the material and single cell receptors and their nanoclusters. Since the first "contact guidance" experiments on parallel microstructures, many other studies followed with increasing feature resolution and biological complexity. Here we present an overview of the advances in the field summarizing the biological scenario, substrate fabrication techniques and applications, highlighting the most recent developments.

4.
Nanomedicine (Lond) ; 17(11): 775-791, 2022 05.
Article in English | MEDLINE | ID: mdl-35642556

ABSTRACT

Aim: To unveil the influence of cell-matrix adhesions in the establishment of gap junction intercellular communication (GJIC) during cell condensation in chondrogenesis. Materials & methods: Previously developed nanopatterns of the cell adhesive ligand arginine-glycine-aspartic acid were used as cell culture substrates to control cell adhesion at the nanoscale. In vitro chondrogenesis of mesenchymal stem cells was conducted on the nanopatterns. Cohesion and GJIC were evaluated in cell condensates. Results: Mechanical stability and GJIC are enhanced by a nanopattern configuration in which 90% of the surface area presents adhesion sites separated less than 70 nm, thus providing an onset for cell signaling. Conclusion: Cell-matrix adhesions regulate GJIC of mesenchymal cell condensates during in vitro chondrogenesis from a threshold configuration at the nanoscale.


Subject(s)
Chondrogenesis , Gap Junctions , Cell Communication/physiology , Gap Junctions/metabolism , Ligands , Signal Transduction
5.
Int J Mol Sci ; 21(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722300

ABSTRACT

Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell-cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell-substrate adhesion in the tissue engineering strategies for cartilage repair.


Subject(s)
Cell Communication , Chondrogenesis , Hyaline Cartilage/metabolism , Mechanotransduction, Cellular , Mesenchymal Stem Cells/metabolism , Adult , Cell Line , Female , Humans , Hyaline Cartilage/cytology , Mesenchymal Stem Cells/cytology , Tissue Engineering
6.
Materials (Basel) ; 13(10)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414175

ABSTRACT

Aiming to address a stable chondrogenesis derived from mesenchymal stromal cells (MSCs) to be applied in cartilage repair strategies at the onset of osteoarthritis (OA), we analyzed the effect of arginine-glycine-aspartate (RGD) density on cell condensation that occurs during the initial phase of chondrogenesis. For this, we seeded MSC-derived from OA and healthy (H) donors in RGD-dendrimer-poly(L-lactic) acid (PLLA) nanopatterned substrates (RGD concentrations of 4 × 10-9, 10-8, 2.5 × 10-8, and 10-2 w/w), during three days and compared to a cell pellet conventional three-dimensional culture system. Molecular gene expression (collagens type-I and II-COL1A1 and COL2A1, tenascin-TNC, sex determining region Y-box9-SOX9, and gap junction protein alpha 1-GJA1) was determined as well as the cell aggregates and pellet size, collagen type-II and connexin 43 proteins synthesis. This study showed that RGD-tailored first generation dendrimer (RGD-Cys-D1) PLLA nanopatterned substrates supported the formation of pre-chondrogenic condensates from OA- and H-derived human bone marrow-MSCs with enhanced chondrogenesis regarding the cell pellet conventional system (presence of collagen type-II and connexin 43, both at the gene and protein level). A RGD-density dependent trend was observed for aggregates size, in concordance with previous studies. Moreover, the nanopatterns' had a higher effect on OA-derived MSC morphology, leading to the formation of bigger and more compact aggregates with improved expression of early chondrogenic markers.

7.
Biomimetics (Basel) ; 4(2)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242712

ABSTRACT

Extracellular matrix remodeling plays a pivotal role during mesenchyme patterning into different lineages. Tension exerted from cell membrane receptors bound to extracellular matrix ligands is transmitted by the cytoskeleton to the cell nucleus inducing gene expression. Here, we used dendrimer-based arginine-glycine-aspartic acid (RGD) uneven nanopatterns, which allow the control of local surface adhesiveness at the nanoscale, to unveil the adhesive requirements of mesenchymal tenogenic and osteogenic commitments. Cell response was found to depend on the tension resulting from cell-substrate interactions, which affects nuclear morphology and is regulated by focal adhesion size and distribution.

8.
Article in English | MEDLINE | ID: mdl-30294596

ABSTRACT

The human musculoskeletal system is comprised mainly of connective tissues such as cartilage, tendon, ligaments, skeletal muscle, and skeletal bone. These tissues support the structure of the body, hold and protect the organs, and are responsible of movement. Since it is subjected to continuous strain, the musculoskeletal system is prone to injury by excessive loading forces or aging, whereas currently available treatments are usually invasive and not always effective. Most of the musculoskeletal injuries require surgical intervention facing a limited post-surgery tissue regeneration, especially for widespread lesions. Therefore, many tissue engineering approaches have been developed tackling musculoskeletal tissue regeneration. Materials are designed to meet the chemical and mechanical requirements of the native tissue three-dimensional (3D) environment, thus facilitating implant integration while providing a good reabsorption rate. With biological systems operating at the nanoscale, nanoengineered materials have been developed to support and promote regeneration at the interprotein communication level. Such materials call for a great precision and architectural control in the production process fostering the development of new fabrication techniques. In this mini review, we would like to summarize the most recent advances in 3D nanoengineered biomaterials for musculoskeletal tissue regeneration, with especial emphasis on the different techniques used to produce them.

9.
J Vis Exp ; (131)2018 01 20.
Article in English | MEDLINE | ID: mdl-29443025

ABSTRACT

Cellular adhesion and differentiation is conditioned by the nanoscale disposition of the extracellular matrix (ECM) components, with local concentrations having a major effect. Here we present a method to obtain large-scale uneven nanopatterns of arginine-glycine-aspartic acid (RGD)-functionalized dendrimers that permit the nanoscale control of local RGD surface density. Nanopatterns are formed by surface adsorption of dendrimers from solutions at different initial concentrations and are characterized by water contact angle (CA), X-ray photoelectron spectroscopy (XPS), and scanning probe microscopy techniques such as scanning tunneling microscopy (STM) and atomic force microscopy (AFM). The local surface density of RGD is measured using AFM images by means of probability contour maps of minimum interparticle distances and then correlated with cell adhesion response and differentiation. The nanopatterning method presented here is a simple procedure that can be scaled up in a straightforward manner to large surface areas. It is thus fully compatible with cell culture protocols and can be applied to other ligands that exert concentration-dependent effects on cells.


Subject(s)
Dendrimers/chemistry , Fibroblasts/cytology , Mesenchymal Stem Cells/cytology , Nanostructures/chemistry , Oligopeptides/chemistry , Adhesiveness , Animals , Cell Adhesion , Chondrogenesis , Mice , NIH 3T3 Cells , Surface Properties
10.
Regeneration (Oxf) ; 3(1): 52-61, 2016 02.
Article in English | MEDLINE | ID: mdl-27499879

ABSTRACT

While regeneration occurs in a number of taxonomic groups across the Metazoa, there are very few reports of regeneration in mammals, which generally respond to wounding with fibrotic scarring rather than regeneration. A recent report described skin shedding, skin regeneration and extensive ear punch closure in two rodent species, Acomys kempi and Acomys percivali. We examined these striking results by testing the capacity for regeneration of a third species, Acomys cahirinus, and found a remarkable capacity to repair full thickness circular punches in the ear pinna. Four-millimeter-diameter wounds closed completely in 2 months in 100% of ear punches tested. Histology showed extensive formation of elastic cartilage, adipose tissue, dermis, epidermis and abundant hair follicles in the repaired region. Furthermore, we demonstrated abundant angiogenesis and unequivocal presence of both muscle and nerve fibers in the reconstituted region; in contrast, similar wounds in C57BL/6 mice simply healed the borders of the cut by fibrotic scarring. Our results confirm the regenerative capabilities of Acomys, and suggest this model merits further attention.

SELECTION OF CITATIONS
SEARCH DETAIL
...