Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 23(3): 584-596, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28930562

ABSTRACT

Early diagnosis is playing an important role in preventing progress of the Alzheimer's disease (AD). This paper proposes to improve the prediction of AD with a deep 3D Convolutional Neural Network (3D-CNN), which can show generic features capturing AD biomarkers extracted from brain images, adapt to different domain datasets, and accurately classify subjects with improved fine-tuning method. The 3D-CNN is built upon a convolutional autoencoder, which is pre-trained to capture anatomical shape variations in structural brain MRI scans for source domain. Fully connected upper layers of the 3D-CNN are then fine-tuned for each task-specific AD classification in target domain. In this paper, deep supervision algorithm is used to improve the performance of already proposed 3D Adaptive CNN. Experiments on the ADNI MRI dataset without skull-stripping preprocessing have shown that the proposed 3D Deeply Supervised Adaptable CNN outperforms several proposed approaches, including 3D-CNN model, other CNN-based methods and conventional classifiers by accuracy and robustness. Abilities of the proposed network to generalize the features learnt and adapt to other domains have been validated on the CADDementia dataset.


Subject(s)
Algorithms , Alzheimer Disease/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Humans , Reproducibility of Results , Sensitivity and Specificity
2.
Front Biosci (Landmark Ed) ; 23(4): 671-725, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28930568

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases that influences the central nervous system, often leading to dire consequences for quality of life. The disease goes through some stages mainly divided into early, moderate, and severe. Among them, the early stage is the most important as medical intervention has the potential to alter the natural progression of the condition. In practice, the early diagnosis is a challenge since the neurodegenerative changes can precede the onset of clinical symptoms by 10-15 years. This factor along with other known and unknown ones, hinder the ability for the early diagnosis and treatment of AD. Numerous research efforts have been proposed to address the complex characteristics of AD exploiting various tests including brain imaging that is massively utilized due to its powerful features. This paper aims to highlight our present knowledge on the clinical and computer-based attempts at early diagnosis of AD. We concluded that the door is still open for further research especially with the rapid advances in scanning and computer-based technologies.


Subject(s)
Alzheimer Disease/diagnosis , Brain/diagnostic imaging , Diagnostic Imaging/methods , Early Diagnosis , Brain/pathology , Disease Progression , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...