Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 16(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37815460

ABSTRACT

Basal-like breast cancer (BLBC) is highly aggressive, and often characterized by BRCA1 and p53 deficiency. Although conventional mouse models enabled the investigation of BLBC at malignant stages, its initiation and pre-malignant progression remain understudied. Here, we leveraged a mouse genetic system known as mosaic analysis with double markers (MADM) to study BLBC initiation by generating rare GFP+Brca1, p53-deficient mammary cells alongside RFP+ wild-type sibling cells. After confirming the close resemblance of mammary tumors arising in this model to human BLBC at both transcriptomic and genomic levels, we focused our studies on the pre-malignant progression of BLBC. Initiated GFP+ mutant cells showed a stepwise pre-malignant progression trajectory from focal expansion to hyper-alveolarization and then to micro-invasion. Furthermore, despite morphological similarities to alveoli, hyper-alveolarized structures actually originate from ductal cells based on twin-spot analysis of GFP-RFP sibling cells. Finally, luminal-to-basal transition occurred exclusively in cells that have progressed to micro-invasive lesions. Our MADM model provides excellent spatiotemporal resolution to illuminate the pre-malignant progression of BLBC, and should enable future studies on early detection and prevention for this cancer.


Subject(s)
Breast Neoplasms , Mammary Neoplasms, Animal , Mice , Animals , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Tumor Suppressor Protein p53/genetics , Mammary Neoplasms, Animal/genetics , Breast/pathology
2.
iScience ; 26(5): 106742, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37207276

ABSTRACT

Different cellular compartments within a tissue present distinct cancer-initiating capacities. Current approaches to dissect such heterogeneity require cell-type-specific genetic tools based on a well-understood lineage hierarchy, which are lacking for many tissues. Here, we circumvented this hurdle and revealed the dichotomous capacity of fallopian tube Pax8+ cells in initiating ovarian cancer, utilizing a mouse genetic system that stochastically generates rare GFP-labeled mutant cells. Through clonal analysis and spatial profiling, we determined that only clones founded by rare, stem/progenitor-like Pax8+ cells can expand on acquiring oncogenic mutations whereas vast majority of clones stall immediately. Furthermore, expanded mutant clones undergo further attrition: many turn quiescent shortly after the initial expansion, whereas others sustain proliferation and manifest a bias toward Pax8+ fate, underlying early pathogenesis. Our study showcases the power of genetic mosaic system-based clonal analysis for revealing cellular heterogeneity of cancer-initiating capacity in tissues with limited prior knowledge of lineage hierarchy.

3.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37163037

ABSTRACT

Basal-like breast cancer is an aggressive breast cancer subtype, often characterized by a deficiency in BRCA1 function and concomitant loss of p53 . While conventional mouse models enable the investigation of its malignant stages, one that reveals its initiation and pre-malignant progression is lacking. Here, we leveraged a mouse genetic system known as M osaic A nalysis with D ouble M arkers (MADM) to generate rare GFP-labeled Brca1 , p53 -deficient cells alongside RFP+ wildtype sibling cells in the mammary gland. The mosaicism resembles the sporadic initiation of human cancer and enables spatially resolved analysis of mutant cells in comparison to paired wildtype sibling cells. Mammary tumors arising in the model show transcriptomic and genomic characteristics similar to human basal-like breast cancer. Analysis of GFP+ mutant cells at interval time points before malignancy revealed a stepwise progression of lesions from focal expansion to hyper-alveolarization and then to micro-invasion. These stereotyped morphologies indicate the pre-malignant stage irrespective of the time point at which it is observed. Paired analysis of GFP-RFP siblings during focal expansion suggested that hyper-alveolarized structures originate from ductal rather than alveolar cells, despite their morphological similarities to alveoli. Evidence for luminal-to-basal transition at the pre-malignant stages was restricted to cells that had escaped hyper-alveoli and progressed to micro-invasive lesions. Our MADM-based mouse model presents a useful tool for studying the pre-malignancy of basal-like breast cancer. Summary statement: A mouse model recapitulates the process of human basal-like breast tumorigenesis initiated from sporadic Brca1, p53 -deficient cells, empowering spatially-resolved analysis of mutant cells during pre-malignant progression.

4.
Cancer Immunol Immunother ; 70(3): 633-656, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32865605

ABSTRACT

Adoptive transfer of Bispecific antibody Armed activated T cells (BATs) showed promising anti-tumor activity in clinical trials in solid tumors. The cytotoxic activity of BATs occurs upon engagement with tumor cells via the bispecific antibody (BiAb) bridge, which stimulates BATs to release cytotoxic molecules, cytokines, chemokines, and other signaling molecules extracellularly. We hypothesized that the release of BATs Induced Tumor-Targeting Effectors (TITE) by this complex interaction of T cells, bispecific antibody, and tumor cells may serve as a potent anti-tumor and immune-activating immunotherapeutic approach. In a 3D tumorsphere model, TITE showed potent cytotoxic activity against multiple breast cancer cell lines compared to control conditioned media (CM): Tumor-CM (T-CM), BATs-CM (B-CM), BiAb Armed PBMC-CM (BAP-CM) or PBMC-CM (P-CM). Multiplex cytokine analysis showed high levels of Th1 cytokines and chemokines; phospho-protein signaling array data suggest that the prominent JAK1/STAT1 pathway may be responsible for the induction and release of Th1 cytokines/chemokines in TITE. In xenograft breast cancer models, IV injections of 10× concentrated TITE (3×/week for 3 weeks; 150 µl TITE/injection) was able to inhibit tumor growth significantly (ICR/scid, p < 0.003; NSG p < 0.008) compared to the control mice. We tested the key components of the TITE for immune activating and anti-tumor activity individually and in combinations, the combination of IFN-γ, TNF-α and MIP-1ß recapitulates the key activities of the TITE. In summary, master mix of active components of BATs-Tumor complex-derived TITE can provide a clinically controllable cell-free platform to target various tumor types regardless of the heterogeneous nature of the tumor cells and mutational tumor.


Subject(s)
Cytotoxicity, Immunologic , Immunomodulation , Lymphocyte Activation/immunology , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers , Cell Line, Tumor , Cells, Cultured , Cytokines/metabolism , Disease Models, Animal , Gene Expression Profiling , Humans , Immunophenotyping , Mice , Neoplasms/diagnosis , Neoplasms/therapy , Treatment Outcome , Xenograft Model Antitumor Assays
5.
Mol Cancer Ther ; 15(3): 460-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26832797

ABSTRACT

Ovarian cancer is the deadliest gynecologic cancer, due in large part to the diagnosis of advanced stage disease, the development of platinum resistance, and inadequate treatment alternatives. Recent studies by our group and others have shown that T-type calcium (Ca(2+)) channels play a reinforcing role in cancer cell proliferation, cell-cycle progression, and apoptosis evasion. Therefore, we investigated whether T-type Ca(2+) channels affect ovarian tumor growth and response to platinum agents. Inhibition of T-type Ca(2+) channels with mibefradil or by silencing expression resulted in growth suppression in ovarian cancer cells with a simultaneous increase in apoptosis, which was accompanied by decreased expression of the antiapoptotic gene survivin (BIRC5). Analysis of intracellular signaling revealed mibefradil reduced AKT phosphorylation, increased the levels and nuclear retention of FOXO transcription factors that repress BIRC5 expression, and decreased the expression of FOXM1, which promotes BIRC5 expression. Combining carboplatin with mibefradil synergistically increased apoptosis in vitro. Importantly, mibefradil rendered platinum-resistant ovarian tumors sensitive to carboplatin in a mouse model of peritoneal metastasis. Together, the data provide rationale for future use of T-type channel antagonists together with platinum agents for the treatment of ovarian cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, T-Type/metabolism , Carboplatin/pharmacology , Drug Resistance, Neoplasm , Ovarian Neoplasms/metabolism , Animals , Apoptosis/drug effects , Apoptosis/genetics , Calcium Channels, T-Type/genetics , Cell Line, Tumor , Cell Survival/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Female , Forkhead Transcription Factors/metabolism , Gene Expression , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mibefradil/pharmacology , Mice , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Survivin , Transcription, Genetic , Xenograft Model Antitumor Assays
6.
Prostate ; 73(8): 801-12, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23192379

ABSTRACT

BACKGROUND: Neuroendocrine (NE) cells promote the progression of prostate cancer to a castration-resistant state through the production of paracrine growth factors. We have demonstrated this principle using in vitro and in vivo proliferative endpoints; however, the contributions of NE-derived pro-survival factors and anti-apoptosis to this phenomenon have not been thoroughly investigated. METHODS: Here, we utilized conditioned-medium (CM) from LNCaP cells, engineered to undergo NE differentiation, and examined its effects on PC3 and LNCaP cell survival. RESULTS: Statistically significant changes in clonogenic survival, Annexin V staining, PARP cleavage and trypan blue positivity of approximately twofold were observed in the presence of NE-derived CM relative to control-CM for both LNCaP and PC3 cells. These changes were partially abrogated by antagonists of the neuropeptides neurotensin, bombesin, and PTHrP. Selective inhibitors of IGF-1R, EGFR or Src caused significant and nearly complete blockade of prostate cancer cell survival due to NE secretions. Similar increases in cell survival were observed for LNCaP or PC3 cells treated with NE-derived medium in the presence of docetaxel. Increased phosphorylation of IGF-1R, following treatment with NE-derived medium, was accompanied by decreased protein tyrosine phosphatase, receptor type F (PTPRF) mRNA, and protein levels. Overexpression of PTPRF decreased cell survival, the amplitude and duration of IGF-1R phosphorylation, and enhanced PARP cleavage in the presence of NE-derived medium. CONCLUSIONS: These data support the hypothesis that NE-derived factors act upon prostate cancer cells to stimulate pro-survival signaling and describe a novel mechanism of cross-talk between NE-derived factors and IGF-1R, mediated in part by PTPRF.


Subject(s)
Neoplasms, Hormone-Dependent/metabolism , Neurosecretory Systems/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptor, IGF Type 1/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Blotting, Western , Cell Line, Tumor , Cell Survival/physiology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplasms, Hormone-Dependent/enzymology , Neoplasms, Hormone-Dependent/genetics , Parathyroid Hormone-Related Protein/antagonists & inhibitors , Parathyroid Hormone-Related Protein/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptor, IGF Type 1/antagonists & inhibitors , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Signal Transduction
7.
Cancer Res ; 71(21): 6817-26, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21903767

ABSTRACT

Radiotherapy combined with androgen depletion is generally successful for treating locally advanced prostate cancer. However, radioresistance that contributes to recurrence remains a major therapeutic problem in many patients. In this study, we define the high-affinity neurotensin receptor 1 (NTR1) as a tractable new molecular target to radiosensitize prostate cancers. The selective NTR1 antagonist SR48692 sensitized prostate cancer cells in a dose- and time-dependent manner, increasing apoptotic cell death and decreasing clonogenic survival. The observed cancer selectivity for combinations of SR48692 and radiation reflected differential expression of NTR1, which is highly expressed in prostate cancer cells but not in normal prostate epithelial cells. Radiosensitization was not affected by androgen dependence or androgen receptor expression status. NTR1 inhibition in cancer cell-attenuated epidermal growth factor receptor activation and downstream signaling, whether induced by neurotensin or ionizing radiation, establish a molecular mechanism for sensitization. Most notably, SR48692 efficiently radiosensitized PC-3M orthotopic human tumor xenografts in mice, and significantly reduced tumor burden. Taken together, our findings offer preclinical proof of concept for targeting the NTR1 receptor as a strategy to improve efficacy and outcomes of prostate cancer treatments using radiotherapy.


Subject(s)
Adenocarcinoma/radiotherapy , Neoplasm Proteins/antagonists & inhibitors , Prostatic Neoplasms/radiotherapy , Pyrazoles/therapeutic use , Quinolines/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Receptors, Neurotensin/antagonists & inhibitors , Adenocarcinoma/pathology , Androgens , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor/drug effects , Cell Line, Tumor/radiation effects , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mice, Nude , Neoplasm Proteins/physiology , Neoplasms, Hormone-Dependent/pathology , Neoplasms, Hormone-Dependent/radiotherapy , Phosphorylation/drug effects , Phosphorylation/radiation effects , Prostatic Neoplasms/pathology , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/radiation effects , Pyrazoles/pharmacology , Quinolines/pharmacology , Radiation Tolerance/drug effects , Radiation Tolerance/physiology , Radiation-Sensitizing Agents/pharmacology , Receptors, Androgen/analysis , Receptors, Neurotensin/physiology , Tumor Stem Cell Assay , Xenograft Model Antitumor Assays
8.
Cancer Res ; 67(17): 8316-24, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17804747

ABSTRACT

2-Methoxyestradiol (2ME2) is an endogenous estradiol metabolite that inhibits microtubule polymerization, tumor growth, and angiogenesis. Because prostate cancer is often treated with radiotherapy, and 2ME2 has shown efficacy as a single agent against human prostate carcinoma, we evaluated 2ME2 as a potential radiosensitizer in prostate cancer models. A dose-dependent decrease in mitogen-activated protein kinase phosphorylation was observed in human PC3 prostate cancer cells treated with 2ME2 for 18 h. This decrease correlated with in vitro radiosensitization measured by clonogenic assays, and these effects were blocked by the expression of constitutively active MEK. Male nude mice with subcutaneous PC3 xenografts in the hind leg were treated with 2ME2 (75 mg/kg) p.o. for 5 days, and 2 Gy radiation fractions were delivered each day at 4 h after drug treatment. A statistically significant super-additive effect between radiation and 2ME2 was observed in this subcutaneous model, using analysis of within-animal slopes. A PC-3M orthotopic model was also used, with bioluminescence imaging as an end point. PC-3M cells stably expressing the luciferase gene were surgically implanted into the prostates of male nude mice. Mice were given oral doses of 2ME2 (75 mg/kg), with radiation fractions (3 Gy) delivered 4 h later. Mice were then imaged weekly for 4 to 5 weeks with a Xenogen system. A significant super-additive effect was also observed in the orthotopic model. These data show that 2ME2 is an effective radiosensitizing agent against human prostate cancer xenografts, and that the mechanism may involve a decrease in mitogen-activated protein kinase phosphorylation by 2ME2.


Subject(s)
Carcinoma/metabolism , Carcinoma/radiotherapy , Estradiol/analogs & derivatives , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Radiation-Sensitizing Agents/pharmacology , 2-Methoxyestradiol , Animals , Carcinoma/enzymology , Estradiol/pharmacology , Estradiol/therapeutic use , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Prostatic Neoplasms/enzymology , Subcutaneous Tissue , Transplantation, Heterotopic , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Cancer Res ; 67(8): 3663-72, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17440078

ABSTRACT

The neuroendocrine status of prostatic adenocarcinomas is considered a prognostic indicator for development of aggressive, androgen-independent disease. Neuroendocrine-like cells are thought to function by providing growth and survival signals to surrounding tumor cells, particularly following androgen ablation therapy. To test this hypothesis directly, LNCaP cells were engineered to inducibly express a constitutively activated form of the cyclic AMP-dependent protein kinase A catalytic subunit (caPKA), which was previously found upon transient transfection to be sufficient for acquisition of neuroendocrine-like characteristics and loss of mitotic activity. Clonal cells that inducibly expressed caPKA enhanced the growth of prostate tumor cells in anchorage-dependent and anchorage-independent in vitro assays as well as the growth of prostate tumor xenografts in vivo, with the greatest effects seen under conditions of androgen deprivation. These results suggest that neuroendocrine-like cells of prostatic tumors have the potential to enhance androgen-independent tumor growth in a paracrine manner, thereby contributing to progression of the disease.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Neoplasms, Hormone-Dependent/pathology , Neuroendocrine Tumors/pathology , Prostatic Neoplasms/pathology , Animals , Catalytic Domain , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Growth Processes/physiology , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/genetics , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mitosis/physiology , Neoplasms, Hormone-Dependent/enzymology , Neoplasms, Hormone-Dependent/genetics , Neuroendocrine Tumors/enzymology , Oligopeptides , Peptides/genetics , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/enzymology , Prostatic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...